## The role of mature forests in sustaining large-scale hydrological cycle :

## physical modeling and historical cases

Jean CHERY Geosciences Montpellier

## **1. BIOTIC PUMP : the CONTROVERSY**

Makarieva, A. M., & Gorshkov, V. G. (2007). **Biotic pump** of atmospheric moisture as driver of the hydrological cycle on land.

*Hydrology and earth system sciences*, *11*(2), 1013-1033.

## Forests make rain

rather than

Rain makes forests



### ANNUAL RAINFALL PROFILES

Makarieva, Gorshkov et Li (2009).

**NON FORESTED :** Exponential decay  $P_0 e^{-x/x0}$ 

FORESTED : Constant or linear  $P_0 + A x$ 



0 140 280

560 Km

Forest

## Other evidence of spatial correlation between forest distance and rainfall



Singh, B. et al. (2024). The relationship between central Indian terrestrial vegetation and monsoon rainfall distributions in different hydroclimatic extreme years using time-series satellite data. *Theoretical and Applied Climatology*, *155*(1), 45-69.

## Biotic pump theory

#### Sowing the wind

The biotic pump theory suggests forests not only make rain, but also wind. When water vapor over coastal forests condenses, it lowers air pressures, creating winds that draw in moist ocean air. Cycles of transpiration and condensation can set up winds that deliver rains thousands of kilometers inland.



#### Most of meteorologists don't believe in such teleconnection



## Computational meteorology : a complex field

- 3 conservation equations
- Multiple physical processes (including vegetation, hydrology, H<sub>2</sub>O phase changes)
- Intensive numerical computing

FORCES  $\rightarrow$  Pressure, winds ENERGY  $\rightarrow$  Temperature MASS  $\rightarrow$  C<sub>H2O</sub> (liquid/gas)

## Water vapor, rain







**Meteorological modelers :**<sup>a)</sup> « all processes are included ! » 30 EQ **Rainfall (DATA)** -30 60 120 180 -120 -60 0 ٥ b) 60 30 EQ Rainfall (MODEL) -30 **Annual rainfall** 120 0 60 180 -120 -60 0 120 180 240 300 60 Yamanaka et al. (2018). (cm)

30

90

210

150

270

330

## Winds driven meteorology : Coriolis forces, etc



WINDS CARRY WATER VAPOR (ADVECTION)

## **Tropospheric rivers**

#### **Rain parades**

So-called flying rivers are prevailing winds that pick up water vapor exhaled by forests and deliver rains to distant water basins. A controversial theory suggests forests themselves drive the winds (bottom).



#### WINDS CARRY WATER VAPOR

160) 2013

## Biotic pump theory

#### Sowing the wind

The biotic pump theory suggests forests not only make rain, but also wind. When water vapor over coastal forests condenses, it lowers air pressures, creating winds that draw in moist ocean air. Cycles of transpiration and condensation can set up winds that deliver rains thousands of kilometers inland.



### WINDS CARRY WATER VAPOR

## Questions :

1. Is water vapor (WV) only transported by winds ?

2. How forests could carry WV ?

3. Does forests removal lead to rain shortage ?

#### Deforestation effect of land cover change: annual rainfall decay

Perugini, et al. (2017). Biophysical effects on temperature and precipitation due to land cover change. Environmental Research Letters, 12(5), 053002.



**Figure 3.** Biophysical effects of regional/global deforestation on regional/global changes of average annual precipitation. Black crosses represent each study data point, filled triangles the average.

## AGREEMENT

✓ Two kinds of rainfall profiles: constant over forests and exponential decay elsewhere

✓ Forest evapotranspiration plays a role for local rainfall (saturation/adiabatic cooling)

 Role of forest as global rainmaker is not well understood

## **2. REVISED « BIOTIC PUMP » THEORY**

## Philosophy of modeling : « Simplicity is the ultimate sophistication »

## Holistic approach :

water evaporates from ocean to troposphere, rains to continent, re-evaporates and returns to ocean through hydrosystems

## **Parsimony principle :**

Provide a simple and **data**-based physical frame to reveal key **parameters** of forest/climate interactions

→ Better understanding, educational benefits, sharable among scientists, aid for political decision



## **SOME REMARKS**

- Transport of gas/light particles in the troposphere occurs by winds but also with dispersion associated to turbulence and convection
- ✓ Dispersion studies started with models of pollutants transport : CFC, CO, SO<sub>2</sub>, Radioactivity
- ✓ Large values of horizontal troposphere diffusivity:
  D<sub>h</sub> = 10<sup>3</sup> − 10<sup>5</sup> m2/s

## 1986, Chernobyl pollutant dispersion

April 27<sup>th</sup> – March 5<sup>th</sup>

Ishikawa, 1995



## 2002, Mount Etna eruption: wind + dispersion

#### clouds composed mostly of water vapour

#### October 29<sup>th</sup>



Fig. 5. Superposition of deterministic simulated data with satellite data. Black points: satellite data; dark grey points: deterministic simulation starting on 29 October 2002 at 06:00 UTC (S1); and light grey points: deterministic simulation starting at 00:00 UTC (S2) of the same day.

#### October 31<sup>th</sup>



Fig. 6. Superposition of deterministic simulated data with satellite data. Black points: satellite data; dark grey points: deterministic simulation starting on 31 October 2002 at 18:00 UTC.

#### Tiesi et al. 2006

## **HYPOTHESIS : zero-net horizontal wind**

Water vapor is transported only by dispersion ( $D_h = 10^3 - 10^5 \text{ m2/s}$ )



## Local water cycle : vertical transfer



## Global water cycle : horizontal transfer

#### Numerical model forced by temperature

(daily and annual sinusoidal variation)



Runs: 50 years

## Computation of pluviometry after 50 years

- ✓ Initially empty aquifers
- ✓ Admissible values of

diffusivity, plant evapotranspiration, roots depth, slope, temperatures

| Experiment<br># | Troposphere<br>diffusivity<br>Dh (m2/s) | EVT <sub>0</sub><br>(mm/j/°C) | Topographic<br>Slope (%) | ∆T (°C) | P <sub>300km</sub><br>(mm/yr) |
|-----------------|-----------------------------------------|-------------------------------|--------------------------|---------|-------------------------------|
| 1 (bare soil)   | <b>10</b> <sup>3</sup>                  | 0                             | 0.2                      | 5       | ?                             |
| 2 (bare soil)   | <b>10</b> <sup>4</sup>                  | 0                             | 0.2                      | 5       | ?                             |
| 3               | 104                                     | 0.1                           | 0.2                      | 5       | ?                             |
| 4               | 104                                     | 0.2                           | 0.2                      | 5       | ?                             |
| 5               | 104                                     | 0.3                           | 0.2                      | 5       | ?                             |
| 6               | 104                                     | 0.3                           | 0.02                     | 5       | ?                             |
| 7               | 104                                     | 0.3                           | 0.02                     | 10      | ?                             |

#### What is the pluviometry 300 km away from the coast ?

EVT = 0 (bare soil) Troposphere diffusivity 10<sup>3</sup> m2/s



EVT = 0 (bare soil)

Troposphere diffusivity  $10^3 \rightarrow 10^4 \text{ m2/s}$ 



EVT = 0.1mm/d/°C (some plants) Troposphere diffusivity  $10^3 \rightarrow 10^4$  m2/s



#### EVT = 0.2 mm/d/°C (more plants)



#### EVT = 0.3 mm/d/°C (only forests)



Slope 0.2 %  $\rightarrow$  0.02 % (flatter topography)



 $\Delta T$  continent 5 °C  $\rightarrow$  10 °C (constrasted temperatures)



## Experiments 1 to 7



#### X 100 amplification

**60 %** due to water vapor dispersion + high evapotranspiration Other : aquifer leakage, temperature variation

## Summary of pluviometry after 50 years (steady state)

| Experiment<br># | Troposphere<br>diffusivity<br>Kh (m2/s) | EVT <sub>0</sub><br>(mm/j/°C) | Topographic<br>Slope (%) | ∆T (°C) | P <sub>300km</sub><br>(mm/yr) |
|-----------------|-----------------------------------------|-------------------------------|--------------------------|---------|-------------------------------|
| 1               | 10 <sup>3</sup>                         | 0                             | 0.2                      | 5       | 8                             |
| 2               | 104                                     | 0                             | 0.2                      | 5       | 57                            |
| 3               | 104                                     | 0.1                           | 0.2                      | 5       | 344                           |
| 4               | 104                                     | 0.2                           | 0.2                      | 5       | 620                           |
| 5               | 104                                     | 0.3                           | 0.2                      | 5       | 713                           |
| 6               | 104                                     | 0.3                           | 0.02                     | 5       | 817                           |
| 7               | 104                                     | 0.3                           | 0.02                     | 10      | 964                           |







## Preliminary summary of experiments

Due to long range water vapor **dispersion**,

High annual rainfall is occuring inside continent under 3 conditions:

- 1. High potential evaporation (EVT<sub>0</sub>)
- 2. Deep roots for real evaporation
- 3. Low aquifer leakage

1. + 2. are only met for natural mature forests

## This theory explains the relation between deforestation and water shortage

60

600

50 500 Might be a more 400 40 % Land area important societal 300 Hd 30 topic than  $CO_2$  increase and 200 20 global warming Primary forest Primary non-forest 10 100 CO<sub>2</sub> concentration 1850 1900 1950 2000 Year

Makarieva, A. M., Nefiodov, A. V., Rammig, A., & Nobre, A. D. (2023). Re-appraisal of the global climatic role of natural forests for improved climate projections and policies. *arXiv preprint arXiv:2301.09998*.

## **3. LESSONS for the PAST**



### ANNUAL RAINFALL PROFILES



## ANNUAL RAINFALL PROFILES

North africa and Middle East: Abundant oceanic water vapor:

- Mediterranean sea
- Black sea
- 🗸 Caspian sea
- ✓ Red sea
- Persian gulf
- ... but limited rain
- ... and limited forested

## Forests, civilization and climate

#### NORTHERN AFRICA:

Wright (2017). Humans as agents in the termination of the African Humid Period. *Frontiers in Earth Science*, *5*, 237134.

#### **MEDITERRANEAN:**

Cline (2014). 1177 BC: The Year Civilization Collapsed. Princeton University Press.

#### IRAN :

Vidale et al. (2017). The late prehistory of the northern Iranian Central Plateau (c. 6000-3000 BC): growth and collapse of decentralised networks. Surplus without the state, political forms in prehistory. In *10th archaeological conference of Central Germany*.

Vaezi et al. (2022). New multi-proxy record shows potential impacts of precipitation on the rise and ebb of Bronze Age and imperial Persian societies in southeastern Iran. *Quaternary Science Reviews*, 298, 107855.

Shoaee et al. (2023). Defining paleoclimatic routes and opportunities for hominin dispersals across Iran. *Plos one*, *18*(3), e0281872.

Nazari et al. (2024) The myth of Lake Saveh, Central Iranian Plateau: a new synthesis of geological, archaeological and historical data

## Africa : Holocene livestock sites

#### Wright (2017)



« Because humans have been documented as exerting significant pressures on the Net Primary Productivity of prehistoric and historic landscapes elsewhere in the world, it is conceivable that they were also catalysts in accelerating the pace of devegetation in the Sahara at the end of the African Humid Period »

## Mid-Holocene drought events in Iran



Fig. 1 Map of the Iranian Plateau showing the late prehistoric sites discussed in the text.

Wet

to

| Age<br>cal BC         | Central<br>Plateau                                                                             | Turk-<br>menia                                                                | Central<br>Plateau                                       | Turk-<br>menia                                                                | Central<br>Plateau           | Turk-<br>menia                                                                                                                              | Central<br>Plateau          | Turk-<br>menia                                                 | Central<br>Plateau                                                | Turk-<br>menia                                                |
|-----------------------|------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|----------------------------------------------------------|-------------------------------------------------------------------------------|------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|----------------------------------------------------------------|-------------------------------------------------------------------|---------------------------------------------------------------|
|                       | Settlement patterns                                                                            |                                                                               | Territorial potential                                    |                                                                               | Precipitation                |                                                                                                                                             | Artificial irrigation       |                                                                | Administration                                                    |                                                               |
| 6000<br>5500          | ? scattered,<br>clusters around<br>springs                                                     | ? scattered                                                                   | Permeable to outer valleys<br>Limited (horizontal shift) | Limited (horizontal shift)<br>Limited but higher than present in mid Holocene | olocene                      | Limited but higher than present in mid Holocene<br>Limited (but higher than present in mid Holocene)<br>and greater than in Central Plateau | -?                          | Incipient                                                      | -?                                                                | Tokens                                                        |
| 5500<br>5000          | ? sparse, clus-<br>ters, simple<br>hierarchy (0.5<br>ha to 6–7 ha)                             | ? scattered                                                                   |                                                          |                                                                               |                              |                                                                                                                                             | Incipient ?                 | Simple<br>canal<br>networks                                    | Tokens                                                            | Tokens                                                        |
| 50 <u>0</u> 0<br>4500 | ? sparse, clus-<br>ters, simple<br>hierarchy (0.5<br>ha to 6–7 ha)                             | ? scattered                                                                   |                                                          |                                                                               | ent in mid H                 |                                                                                                                                             | Simple<br>canal<br>networks | Simple<br>canal<br>networks                                    | Tokens                                                            | Tokens<br>expanding use                                       |
| 4500<br>4000          | ? sparse, clus-<br>ters, simple<br>hierarchy (0.5<br>ha to 6–7 ha)                             | ? scattered,<br>but growing<br>in number                                      |                                                          |                                                                               | Limited but higher than pres |                                                                                                                                             | Simple<br>canal<br>networks | Simple<br>canal<br>networks                                    | Tokens                                                            | Tokens<br>expanded use,<br>animal forms                       |
| 4000<br>3500          | ? sparse, clus-<br>ters, simple<br>hierarchy (0.5<br>ha to 6–7 ha)                             | Two-tiered<br>hierarchy<br>(< 1 ha vs.<br>10–20 ha)                           |                                                          |                                                                               |                              |                                                                                                                                             | Simple<br>canal<br>networks | Canal<br>networks<br>and basins                                | Tokens                                                            | Seals with<br>eccentric<br>(off-centre/<br>off-centred) holes |
| 3500<br>3000          | Deformed hier-<br>archy: 0.5 ha<br>to specialised<br>industrial areas<br>measuring<br>30–50 ha | Probably<br>three-tiered<br>hierarchy<br>(capitals<br>> 30 ha)                |                                                          |                                                                               |                              |                                                                                                                                             | Simple<br>canal<br>networks | Canal<br>networks<br>and basins                                | Sporadic<br>use of<br>seals (?)<br>»Proto-<br>elamite«<br>tablets | General use<br>of seals with<br>central holes                 |
| 30 <u>0</u> 0<br>2500 | Collapse,<br>abandonment                                                                       | Urbanism<br>peak (capitals<br>> 30–50 ha)                                     |                                                          | Strongly<br>cir-<br>cumscri-<br>bed<br>(Murghab)                              | Drought<br>event             | Drought<br>event                                                                                                                            | -                           | Canal<br>networks<br>and basins                                | -                                                                 | General use<br>of seals,<br>no writing                        |
| 2500<br>1700          | Desert                                                                                         | Former cities<br>abandoned,<br>palatial urba-<br>nism in the<br>Murghab delta |                                                          | Strongly<br>cir-<br>cumscri-<br>bed<br>(Murghab)                              | Increased<br>aridity         | Increased<br>aridity                                                                                                                        | -                           | Canal<br>networks<br>and basins<br>urban artifi-<br>cal basins | -                                                                 | Seals and no writing                                          |

Vidale et al. (2017).

## Archeology of the Central Iranian plateau during Holocene

Nazari et al. (2024).



## Conclusion

The revised **biotic pump model** could be used to test a scenario for naturally forested zones :

- 1. Climatic system has a long term equilibrium (invariant global climate)
- 2. Extension of pastoralism and cultivation leads to deforestation
- 3. Lack of evapotranspiration stops atmospheric connections to large water bodies
- 4. Average rainfall decreases and aquifers become depleted
- 5. Societies must adapt or leave because of persistent drought

## Could be one of the path to civilization collapse

# Thank you for your attention



## Physical model and constitutive equations



 $\Delta$ H2O = (C<sup>+</sup>-C<sup>-</sup>) + (P-E) - (Q+R) <sup>to</sup> Moisture convergence / Infiltration / Outflow

TROPOSPHERE :

C: Dispersion equation of water vapor (Fick's law, parameter Dh  $(10^3 - 10^5 \text{ m2/s})$ . Cf Pisso et al. 2009

**P** : **Rain rate** is function of vapor saturation and max precipitable water

CRITICAL ZONE :

#### **E** : Forest evapotranspiration

increases with temperature: **roots pump** into a reservoir (withdrawal by vertical flow);

I : Р-Е

**Q+R : Horizontal flow** follows topographic slope (Darcy's law)



