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Abstract 42 

A severe dust storm blanketing Central Asia on 3-4 November 2021 was investigated 43 
employing satellite remote-sensing, synoptic meteorological observations, reanalysis and 44 
HYSPLIT back-trajectories. The prevailing meteorological conditions showed an 45 
intensification of air subsidence over eastern Kazakhstan, featured in a typical omega-blocking 46 
system over the region and two troughs to its west and east axis, one day before the dust storm. 47 
The prevailing high-pressure system and temperature gradients over Kazakhstan modulated the 48 
dominant anticyclonic wind pattern generated from the south Balkhash basin toward the 49 
Caspian Sea, causing a huge dust storm that covered the southern half of Kazakhstan and large 50 
parts of Uzbekistan, Tajikistan and Turkmenistan. The dust storm originated in the steppes of 51 
southern Kazakhstan by violent downdraft winds. Initially it swept over eastern parts and then 52 
the whole of Uzbekistan, reaching the Caspian Sea in the west. Meteorological measurements 53 
and HYSPLIT back-trajectories at selected sites in Central Asia (Turkmenabat, Khujand and 54 
Tashkent) showed a remarkable dust impact that reduced temperature (by 2-4 °C) and visibility 55 
to below 1 km at different periods, as the thick dust plume expanded in various directions. The 56 
extremely high PM concentrations (PM10> 10,000 μg m-3 in Tashkent) could endanger both 57 
human health and the environment, especially in a region suffering from high susceptibility to 58 
wind erosion and significant land degradation and desertification. Effective and immediate 59 
stabilising measures to control wind erosion in vulnerable areas of Central Asia are warranted. 60 

Keywords: Atmospheric circulation; Dust storms; HYSPLIT; Backward trajectory; Tashkent. 61 
 62 

 63 

1 Introduction 64 

The ambient air pollution induced by dust storms is associated with a wide range of human 65 

health disorders (Middleton, 2020) including (i) respiratory diseases such as bronchial asthma 66 

and chronic bronchitis (Al-Hemoud et al., 2018; Kang et al., 2012; Wang et al., 2014), (ii) 67 

cardiovascular diseases (Aghababaeian et al., 2021; Aili and Kim Oanh, 2015), (iii) 68 

psychological and cognitive disorders (Ghaisas et al., 2016; Gordeev et al., 2013) and (iv) 69 

neurodegenerative diseases (Aleya and Uddin, 2020; Chin-Chan et al., 2015; Galán-Madruga 70 

et al., 2020; Galán-Madruga and García-Cambero, 2022; Shafiee et al., 2021). Moreover, 71 

increased total non-accidental deaths in both adults and children are reported among exposed 72 

individuals in areas highly impacted by dust storms (Achilleos et al., 2019; Díaz et al., 2017; 73 

Galán-Madruga et al., 2022; Kashima et al., 2016; Perez et al., 2008). High ambient 74 

concentrations of dust particles caused by intense dust storms also lead to horizontal visibility 75 

reduction, which can have socio-economic impacts in several sectors, including aviation, 76 
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transport, education, leisure construction and energy production (Middleton et al., 2021; 77 

Middleton, 2017; Middleton and Kang, 2017). Dust aerosols, originating from desert areas all 78 

over the world, can play an important role in altering Earth’s solar radiation balance and the 79 

primary productivity of oceans through iron fertilization (Cherian and Quaas, 2020; Jickells et 80 

al., 2005; Kok et al, 2018; Schepanski, 2018; Valenzuela et al., 2017). Dust is a major type of 81 

tropospheric aerosol and the most common wind-induced climatic phenomenon in the 82 

hyperarid, arid and semi-arid regions of Central Asia (CA), accounting for ~25% of total global 83 

dust emissions, with significant impacts on regional climate, biogeochemical cycles, loess 84 

formation and the hydrological cycle (Booth et al., 2012; Ginoux et al., 2004; Li et al., 2021; 85 

Issanova and Abuduwaili, 2017; Uno et al., 2009).  86 

In recent times, dust generation and, consequently, population exposure in CA have 87 

escalated due to climate variability and land cover changes, as a result of rapid development, 88 

deforestation, enhanced aridity, mining and agricultural activities (Gao and Washington, 2009; 89 

Sternberg and Edwards, 2017; UN, 2010; Wiggs et al., 2003). Across CA, the most wind 90 

erosive areas and hotspots of dust storm activity are in Kazakhstan (areas surrounding the 91 

desiccated Aral Sea, known as the Aralkum Desert, Saryesik Atyrau Desert to the south of 92 

Lake Balkhash and Muyunkum Desert to its western end), Turkmenistan (Karakum Desert), 93 

Uzbekistan (Kyzylkum Desert), west of Mongolia and northwest China (Tarim Basin, 94 

Taklimakan and Gurbantunggut Deserts) (Gholami et al., 2021; Laurent et al., 2006; Song et 95 

al., 2021). Beyond climate change (decrease of precipitation and desertification over CA), 96 

human intervention, specifically the extended cultivation ploughing up of pastures during the 97 

Virgin Lands Programme of the 1950s, have played an important role in the increased wind 98 

erosion activity (Goudie and Middleton, 2006; Indoitu et al., 2012; Li and Sokolik, 2018). For 99 

example, in Kazakhstan, different degrees of land degradation and desertification occur due to 100 

anthropogenic activities, unsustainable land practices such as agricultural activities, and non-101 
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rational use of natural sources such as water (Almaganbetov and Grigoruk, 2008; ARLCURK, 102 

2006; Lau et al., 2020; Madruga et al., 2019). Land degradation and desertification are mainly 103 

observed in regions under unfavourable ecological conditions such as Lake Balkhash, Caspian 104 

lowland and around the dried bed of the Aral Sea (GEF, 2003; NPRK, 2005). The areas in 105 

Kazakhstan most vulnerable to wind erosion are the western and southern parts, where the total 106 

wind-eroded lands are estimated at about 12.4 and 13.1 million hectares respectively (out of 107 

273.5 million hectares of the Kazakhstan territory). In addition, wind eroded agricultural lands 108 

in the eastern and northern parts of the country occupy about 1.28 and 3.87 million hectares 109 

respectively, which are subject to accelerated desertification, including around 66% of 110 

Kazakhstan’s total area (Almaganbetov and Grigoruk, 2008; CSD, 2002). These conditions 111 

may lead to changes in regional terrestrial (desertification, wetness of topsoil, surface water 112 

resources, surface roughness) and climatic factors (wind and rainfall regimes), facilitating 113 

generation of dust storms over CA (Huang et al., 2016, 2017; Mahmoodirad et al., 2016;Wang 114 

et al., 2017; Xi and Sokolik, 2015).  115 

Seasonal and inter-annual changes in atmospheric circulation patterns, along with changes 116 

in local topography, land use land cover (LULC) and long-term modulations of the climate 117 

system, control the dust activity over CA (Kaskaoutis et al., 2017; Nobakht et al., 2021; Shi et 118 

al., 2019; 2021; Zhang et al., 2020). Dust particles rising from Central Asia are held responsible 119 

for air-quality deterioration over Korea, Japan and Taiwan (Hashizume et al., 2010; Hasunuma 120 

et al., 2019), as well as northeast Iran-Afghanistan and other parts of southwest Asia 121 

(Kaskaoutis et al., 2016; Mohammadpour et al., 2022). Specific synoptic weather patterns may 122 

also favour dust from CA to be transported to the west, impacting Georgia, Belarus and 123 

Lithuania (Hongisto and Sofiev, 2004) or even the Balkans and Italy (Tositti et al., 2022). 124 

Furthermore, other studies showed that 3% of Asian dust can reach the western USA 125 

(Creamean et al., 2014). Dust-raising activity over CA occurs mostly during spring and summer, 126 
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depending on area and meteorological conditions (Rupakheti et al., 2020, 2019), while dust-127 

induced radiative forcing during intense dust events in Dushanbe, Tajikistan were estimated at 128 

-48 ± 12, -85 ± 24 and 37 ± 15 Wm-2 at the top of the atmosphere, surface and within the 129 

atmosphere, respectively, with even higher values during extreme dust events (Rupakheti et al., 130 

2021).Although several aspects regarding dust sources, climatology of dust activity and dust 131 

impacts have been well documented in CA, as discussed above, case studies of severe and long-132 

range transported dust events from this region are rare in the literature (Tositti et al., 2022).  133 

This work analyses a severe dust storm event over CA that affected a large area in southern 134 

Kazakhstan, Uzbekistan and Tajikistan on 3–4 November 2021 (Eurasianet, 2021; 135 

MKWEATHER, 2021) (Fig. 1). A massive dust storm covered Tashkent, the capital of 136 

Uzbekistan, where the horizontal visibility decreased to 200 meters and the PM10 137 

concentrations spiked at 18,000 µg m-3 on 4 November 2021, 30 times above the Uzbekistan 138 

maximum acceptable level. Local authorities reported that it was the most extreme sand/dust 139 

storm during the last 150 years of monitoring in Tashkent (Uzhydromet, 2021). The true colour 140 

imagery of Terra-MODIS sensor, accessible from NASA Worldview 141 

(https://worldview.earthdata.nasa.gov) on 4th November 2021, showed a thick dust plume 142 

covering parts of south-eastern Kazakhstan, Uzbekistan and north Tajikistan around the 143 

Fergana valley (Fig. 1). People in Tashkent were advised to stay indoors, avoiding walks and 144 

physical activities. On 4th November 2021, the ambulance service received 687 calls from 145 

inhabitants in Tashkent seeking help for respiratory problems. Besides hospital admissions, 146 

local authorities reported car accidents and casualties due to low horizontal visibility 147 

(Uzhydromet, 2021). Moreover, on 5th November, the dust haze caused interruptions in 148 

drinking water supply in some districts of Tashkent due to the malfunction in the high-voltage 149 

power supply network (Eurasianet, 2021). Dust intrusion also caused a power outage in about 150 

50 villages in the Turkestan region, southeast Kazakhstan, while drivers were stuck on the 151 

https://worldview.earthdata.nasa.gov/
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highway in traffic jams on 4th November 2021, due to reduced visibility (Eurasianet, 2021). 152 

Overall, this severe dust storm caused many socio-economic and health impacts for local 153 

inhabitants, beyond deterioration of air quality.  154 

This unprecedented dust event in CA undoubtedly needs further investigation of the 155 

meteorological conditions and driving mechanisms that initiated such a dust storm. This study 156 

investigates the synoptic meteorology and atmospheric circulation patterns that triggered this 157 

dust storm event and aims to detect the dust source and the expansion of the dust plumes via 158 

SEVIRI satellite imagery. Furthermore, it examines the impact of the dust storm on local 159 

meteorological conditions and visibility at specific sites in CA, and provides discussions about 160 

land degradation and increased dust activity over CA during the last decades. 161 

2 Methods 162 
 163 

2.1 Study region  164 

The Central Asian plains stretch from the shores of the Caspian Sea in the west to the 165 

foothills of Altai, Tian-Shan and Pamir Mountains in the east (Fig. 2). The Central Asian 166 

drylands cover an area of 1.890 million km2 and are home to about 40 million inhabitants 167 

(Indoitu et al., 2012). The area consists of various litho-edaphic desert types such as gravel-168 

gypseous and gravel, sandy, sandy-pebble and pebble, loess, loamy, solonchakous and clayey 169 

deserts (Issanova and Abuduwaili, 2017; Gholami et al., 2021; Li et al., 2021). Based on 170 

different synoptic processes and meteorological conditions, CA is divided into two climatic 171 

zones of northern and southern (Issanova et al., 2015). The northern part has a dry and cold 172 

continental Central Asian climate, while the southern region is characterized by a dry and hot 173 

climate. In the northern part, the mean annual temperature varies between 5 and 11 °C, while 174 

it increases to 13–16.6 °C  in the southern part. The annual precipitation over the whole region 175 

varies between 80 mm and 200 mm and it is below 100 mm in the desert regions of western 176 
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Balkash shore, Kyzylkum, Karakum Deserts and Betpak-Dala (Indoitu et al., 2012; Issanova 177 

and Abuduwaili, 2017). 178 

2.2 Ground-based observations 179 

In this study, ground-based hourly data of horizontal visibility, wind speed and 180 

temperature at selected stations in Central Asia (i.e., Tashkent, Uzbekistan; Khujand, Tajikistan; 181 

Turkmenabat, Turkmenistan) were obtained from the Iowa Environmental Mesonet 182 

(https://mesonet.agron.iastate.edu/ASOS/). Additionally, hourly PM2.5 data were obtained 183 

from the monitoring station in the United States Embassy in Tashkent, Uzbekistan 184 

(https://www.airnow.gov/international/us-embassies-and-consulates/).  185 

2.3 Reanalysis data 186 

ERA-5 reanalysis (Hersbach et al., 2020) is produced by European Centre for Medium-187 

Range Weather Forecasts (ECMWF) within the Copernicus Climate Change Service (C3S), 188 

which includes a detailed record of the global atmosphere and land surface from 1950 onwards 189 

(Hersbach et al., 2020). In this study, ERA-5 reanalysis data was used to obtain meteorological 190 

variables of (i) vertical velocity at 300 hPa, (ii) zonal wind at 250 hPa, (iii) geopotential heights 191 

at 500 and 850 hPa, (iv) air temperature at 2 m, (v) Mean Sea Level Pressure (MSLP) and (vi) 192 

surface vector winds, for the characterization of the daily synoptic conditions at 0.5o × 0.5o 193 

spatial resolution over CA during the dust storm event. 194 

The Modern-Era Retrospective Analysis for Research and Applications, version 2 195 

(MERRA-2), is a long-term global reanalysis product with a horizontal resolution of 0.5◦ × 196 

0.625◦ (latitude, longitude) and a temporal resolution varying from hour to month ( Galán-197 

Madruga, 2022; Gelaro et al., 2017; Sayer et al., 2019; Shafiee et al., 2019). In this study, the 198 

dust loading/dust column mass density (g m-2) was taken over CA on a daily basis around the 199 
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dust storm event, as MERRA-2 has been proved as an accurate database for studying dust 200 

aerosols (Shaheen et al., 2020; Shi et al., 2019).  201 

2.4 Satellite remote sensing observations/products 202 

Visible/IR images of SEVIRI (Spinning Enhanced Visible and Infrared Imager) were 203 

employed to monitor the transport of the dust storm in high temporal resolution (~15 mins) 204 

(Schepanski et al., 2007, 2009). The infrared channel data from SEVIRI is based on RGB (red-205 

green-blue) image compositions, and dusty pixels in pink or magenta colours are used to 206 

monitor the evolution of dust events during both day and night over desert areas (Martínez et 207 

al., 2009; Kaskaoutis et al., 2019a).  208 

2.5 HYSPLIT Model 209 

The HYSPLIT-4 (Hybrid Single-Particle Lagrangian Integrated Trajectory) model is 210 

widely used for analysis of the air-mass trajectories, dispersion and deposition of aerosols using 211 

the Global Forecast System (GFS) meteorological parameters as the initial background field 212 

(Ashrafi et al., 2014; Draxler and Hess, 1997). In this study, HYSPLIT air-mass back-213 

trajectories were used at certain receptor sites in Central Asia like Tashkent (41.3o N, 69.26o 214 

E), Khujand (40.28o N, 69.63o E) and Turkmenabat (39.03o N, 63.56o E) on the dust storm day 215 

(4 November 2021), in order to investigate the dust source and the pathways of the expanded 216 

dust plumes that affected several regions in Central Asia (Rashki et al., 2015).   217 

3 Results and discussion 218 

3.1 Satellite remote sensing observations 219 

SEVIRI Visible/IR imagery enables detection of slight or thick dust plumes, as well as 220 

subtle variations from one image to another, on high temporal resolution (Schepanski et al., 221 

2009; Alizadeh et al., 2014). In this study, SEVIRI imagery was deployed to monitor the 222 
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evolution of the dust storm, aiming to identify the source origin, expansion of the dust plume 223 

and the affected areas in CA on 4th November 2021 (Fig. 3). Strong north-easterlies, which will 224 

be analysed in the next section, triggered dust-raising in Zhambyl region, and activated dust 225 

sources in Moiynkum, Kyzylorda and eastern Kyzylkum Deserts in the early morning of 4th 226 

November 2021 (04:00 UTC). The thick dust plume, shown in bold pink and magenta colours, 227 

reached Turkmenabat, Tashkent and Khujand at around 09:00 UTC, 11:00 UTC and 12:00 228 

UTC, respectively. Terra-MODIS true-colour observations and SEVIRI RGB images 229 

corroborate detection of a very thick dust plume. However, the intensity of the pink/magenta 230 

colours associated with dust in RGB imagery does not absolutely agree with the dust intensity, 231 

since the RGB signal could be affected by dust mineralogy, low-temperature inversions and 232 

dust-layer height (Brindley et al., 2012; Solomos et al., 2018). The extensive cloudiness over 233 

the mountainous ranges is detected in ochre and brown colors in RGB imagery. Note also the 234 

change in the desert-surface reflectance colour from light cyan during the early morning hours 235 

to yellow, light orange during noon and early afternoon hours on 4 November (Fig. 3).  236 

3.2 Atmospheric dynamics during the dust storm  237 

This section analyses the atmospheric circulation patterns in the upper, middle, and lower 238 

troposphere during a 6-day period (1–6 November 2021) around the dust storm day (4 239 

November 2021), aiming to reveal the dynamic conditions that were associated with the genesis, 240 

expansion and dissipation of the dust storm (Figs. 4-7). Prior to the dust storm, on 1st November, 241 

a typical cold atmospheric circulation formed over eastern Europe and the Balkan Peninsula, 242 

detected by a deep trough, which started to dissipate on 3rd November (Fig. 4a-c). In the upper 243 

troposphere, these conditions were characterized by two relatively weak polar and subtropical 244 

jet streams over Russia and south Asia, respectively. The polar jet stream was progressively 245 

moving from central-west Siberia to east Kazakhstan, while marginal changes were observed 246 

in the sub-tropical jet stream, with a core of above 45 ms-1 over the Ganges valley and the 247 
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Himalayas (Fig. 5a-c). The dynamic conditions created subsidence behind the subtropical jet 248 

core over the east of Iran, Afghanistan and Pakistan, while negative omega values at 300 hPa 249 

dominated over the Kazakhstan-Russia border, associated with the polar jet (Fig. 5a-c). In the 250 

meanwhile, the cold Siberian anticyclone was dominant over eastern Siberia, creating a strong 251 

gradient of geopotential heights across the Russia-Kazakhstan border. A high-pressure ridge 252 

prevailed on days prior to dust storm stretching from the Middle East and Iran to the Caspian 253 

Sea and western Russia, carrying warmer air masses over the region. These conditions created 254 

an omega blocking system over CA and Russia on days prior to the dust storm, while the axis 255 

of this ridge progressively shifted from southeast-to-northwest (1st November) to southwest-256 

northeast on 4th November (Fig. 4), thus changing the upper-troposphere circulation. The 257 

upper-level conditions accompanied by stretching a trough in mid troposphere (500 hPa) over 258 

the northern borders of Kazakhstan, increased the instability along troposphere, which was 259 

induced to penetrate cold air masses from the Siberian region into CA. On 3rd November, just 260 

prior to the dust storm, the polar jet, with a core of 35-45 ms-1, moved from south Russia to 261 

east Kazakhstan, causing negative omega at 300 hPa over the region (Fig. 5a-c). These 262 

conditions maximized air subsidence over the Kazakhstan-Russia border, which was 263 

accompanied by the eastward replacement of the polar jet with air upward motion over 264 

southeast Kazakhstan (Fig. 5c). The circulation at 500 hPa level featured a typical omega 265 

blocking pattern, with a large ridge over west Russia and two troughs to its west and east, 266 

whereas the latter was much deeper than the former extending into the whole territory of 267 

Kazakhstan. A strong surface-temperature gradient was created along north Kazakhstan, with 268 

the minimum temperature below −30 °C (Sun et al., 2020), which was moving northwards 269 

affecting the central-eastern part of Kazakhstan on 3rd – 4th November, with characteristics of 270 

a cold front associated with the Siberian anticyclone. Furthermore, the establishment of the 271 
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polar jet stream strengthened the vertical instability, helping the convergence and invasion of 272 

cold air mass into east Kazakhstan.  273 

The atmospheric circulation on 4th November had a notable difference from that on 3rd 274 

November, mostly detected by the strengthening of the jet stream over eastern Kazakhstan 275 

(wind speeds above 45 ms-1). This jet stream was expanded over a much lower area, which was 276 

affected by an intensified trough, as a tongue of cold-air intrusion from the Siberian anticyclone 277 

(Fig. 4d, 5d). These meteorological conditions triggered highest negative omega values 278 

highlighted an upward air motion in the upper troposphere over east Kazakhstan and 279 

surroundings and is likely to be highly associated with the dust storm outbreak, as also shown 280 

in previous studies over the Middle East and the Mediterranean (Kaskaoutis et al., 2019b; 281 

Rashki et al., 2019; Hamzeh et al., 2021). These dynamic conditions also induced an intense 282 

gradient between northern divergence and southern convergence in Central Asia. Furthermore, 283 

in the middle troposphere (500 hPa), the south-westward trough became deeper compared to 284 

previous day and it is stretched from Siberia to Iran, with the expanded ridge north-eastward, 285 

covering central Russia (Fig. 4d). The omega blocking system, accompanied with the Siberian 286 

anticyclone and favoured by the establishment of the upper-level jet stream over east 287 

Kazakhstan, seem to play a major role in the dust storm outbreak in east Kazakhstan. Although 288 

the atmospheric circulation patterns during intense dust storms in CA have not been well 289 

documented, being also variable depending on season and dust event (Kaskaoutis et al., 2019b; 290 

Tositti et al., 2022), the role of the Siberian anticyclone, the position and movement of the 291 

upper-level jet stream seem to be very important factors controlling dust activity over CA 292 

during the cold period of the year. 293 

On 5th November, the strong zonal winds at 250 hPa (> 25 ms-1) covered an extended 294 

area from Italy toward western Russia (Fig. 5e), which was further extended to Siberia on the 295 

next day, while the upper-level jet over eastern Kazakhstan was dissipated and moved further 296 
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to the south, practically merged with the subtropical upper-level jet over north India and the 297 

Tibetan Plateau (Fig. 5f). This weather pattern reflects rather stable upper-troposphere 298 

conditions accompanied by descending air, with positive omega values, over nearly the whole 299 

CA. The negative omega values prevailed in the northern edge of the subtropical jet (Fig. 5e), 300 

became more active air ascending over the trough-affected areas contributing to suction of cold 301 

air masses toward Tajikistan and northeast Pakistan on 5th November, when an expanded 302 

trough tongue covered the southeast Central Asian countries, extended over Iran (Fig. 4e). The 303 

omega blocking system over CA was significantly dissipated after the dust storm day and was 304 

limited to southern latitudes, as a ridge over the East Mediterranean - Middle East (EMME) 305 

region. These conditions limited invasion of polar cold air and transferred warmer air masses 306 

over CA and pushed the trough toward the east, while a zonal circulation was established at 307 

northern latitudes over Russia (Fig. 4e, f). 308 

The relative positions and intensity of the low- and high-pressure systems accompanied 309 

by the polar and subtropical jet streams at upper-levels, generally control the intensity of the 310 

surface regional winds and dust outbreaks (Francis et al., 2018, 2022; Mohammadpour et al., 311 

2021b; 2022a, b). The meteorological conditions due to Caspian’s ridge at 500 hPa level 312 

facilitated the formation of high-pressure conditions at lower troposphere and at the surface 313 

over CA countries (Fig. 6). These conditions seem to modulate the dust activity over the region 314 

(Kaskaoutis et al., 2016; Shi et al., 2019). The dynamic pressure pattern on 2nd November, 315 

which was a combination of two weak high-pressure systems over north Russia and CA on 316 

previous day, was characteristic of the omega blocking at the lower troposphere (850 hPa) and 317 

at the surface, with high-pressure conditions over central Siberia. The geopotential heights at 318 

850 hPa presented even higher values on the next days (3rd and 4th November 2021), with 319 

closed high-pressure systems over Kazakhstan, while at surface, high-pressure conditions of 320 

above 1040 hPa dominated over the whole Kazakhstan territory. The synoptic meteorology 321 
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over the examined domain clearly dominated by this high-pressure system over CA, while 322 

lower pressure conditions prevailed in south Asia, the EMME region and in central/western 323 

Europe (Fig. 6a-d). This intense and expanded high-pressure system over CA (>1600 gpm; 324 

>1040 hPa over Kazakhstan), was a triggering dynamic for the formation of dust storm on 4 325 

November 2021, while on the days after the dust storm, the core of the high-pressure system at 326 

850 hPa was expanded over a larger area, slightly moved towards the east, and then 327 

significantly dissipated (Fig. 6e-f). These meteorological conditions were different from those 328 

usually prevailed during dust storms over southwestern CA in spring and summer that were 329 

attributed to high-pressure system over the Caspian Sea and thermal low-pressure over 330 

topographic-low areas in southern latitudes (Cheng et al., 2019; Li et al., 2019; 331 

Mohammadpour et al., 2021b, 2021a). Overall, MSLP dynamics highly controlled the wind 332 

regime on days prior, during and after the intense dust storm of 4th November 2021 over 333 

southeastern Kazakhstan.  334 

Figure 6 shows the vector wind at the surface along with the spatial distribution of dust 335 

loading (in g m-2) obtained from MERRA-2 over Central Asia from 1 to 6 November 2021. 336 

The establishment of the high-pressure system over the northern part of CA on 2nd November, 337 

modified the wind regime from the previous day, with a strong anticyclonic flow over 338 

Kazakhstan, which further intensified on 3rd November. The easterly winds, propagated from 339 

the southern flanks of the high-pressure system over the southern part of CA, passed over 340 

Moiynkum, eastern Kyzylkum, Aralkum and Karakum Deserts (Zhou et al., 2019) and 341 

advected high dust loading covering a wide area till the shores of the Caspian Sea (Fig. 7b-c). 342 

At the same time, winter Shamal wind facilitated increased dust loading over the Syrian–Iraqi 343 

plains. A strong northerly/north-easterly flow dominated over the dust-source area, as well as 344 

over the alluvial dried beds in the Balkhash basin in east Kazakhstan, favouring dust emissions. 345 

On the dust storm day (4 November 2021), the associated changes in the distribution of G850, 346 
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MSLP and wind regimes over the central Asian countries, indicated that the strengthened high-347 

pressure system intensified the dominant anticyclonic wind pattern compared to previous days. 348 

The prevailing surface wind propagated from the southern Balkhash basin blowing toward the 349 

Caspian Sea and affected the southern half of Kazakhstan and nearly whole territories of 350 

Uzbekistan and Turkmenistan (Fig. 7d). These areas are covered by high columnar dust loading 351 

greater than 1.1 g m-2, probably emitted from the various deserts such as Aralkum, Kyzylkum, 352 

Trans-Unguz, and central Karakum and alluvial dried beds of the Caspian lowlands (Nobakht 353 

et al., 2021). Therefore, apart from the thick dust plume that covered the Tashkent area on 4 354 

November 2021 and caused several socio-economic and health impacts on local population, 355 

the north-easterly/easterly flows generated from the centre of the anticyclone over Kazakhstan 356 

facilitated an extensive dust blanket over the southern parts of CA, also covering the Caspian 357 

Sea (Figs. 7d). The synoptic conditions on 5th November presented large similarities with the 358 

dust storm day, and this is also shown in the vector wind pattern, while the dust loading was 359 

progressively dissipated with lower values (~0.5 to 0.7 g m-2) over southern CA (Fig. 7e). 360 

MERRA-2 observations show high dust loading over the Tarim Basin and Taklimakan Desert, 361 

likely caused by convergence of winds over these desert areas and a significant dust transport 362 

from Libya towards south Italy and the Balkans due to strong southerlies. On the next day, 6th 363 

November 2021 (Fig. 7f), the dust loading over Central Asia was further reduced, while the 364 

dust hotspots over Taklimakan, central Mediterranean and the Indo-Gangetic plains intensified.   365 

3.3 Ground-based meteorological observations 366 

3.3.1 PM2.5 concentrations in Tashkent  367 

Figure 8 shows the variation of hourly PM2.5 concentrations from the air quality station located 368 

in the US embassy in Tashkent, Uzbekistan from 1 to 10 November 2021. The PM2.5 369 

concentrations are color-coded with the Air Quality Index (AQI) data classified for the six AQI 370 

categories (good, satisfactory, moderate, poor, very poor and severe) related to various health 371 
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clusters for the local population (from good to hazardous). Around 18:00 pm on 4 November 372 

2021, there was a spike in PM2.5 levels caused by the arrival of the severe dust storm originated 373 

from southeast Kazakhstan. PM2.5 concentrations raised above 900 µg m-3 during the afternoon 374 

hours on 5th November. On 5 and 6 November, the AQI values were categorized in the very 375 

unhealthy and hazardous class for any group of population in Tashkent. There was a gap in 376 

PM2.5 recordings between 22:00 pm on 4th November and 17:00 pm on 5th November, probably 377 

attributable to instrument failure caused by the severe PM concentrations. The daily mean 378 

PM2.5 concentrations were 393 µg m-3 (26 times higher than the guideline level of 15 µg m-3 379 

according to WHO), 215 µg m-3 (14 times higher) and 111 µg m-3 (7.5 times higher), on 6th, 7th 380 

and 8th November, respectively (WHO, 2021). The intense dust haze ( caused by particles 381 

raised into the atmosphere by a recent dust or sand storm) started dissipating in the evening 382 

hours of 6th November. Still, dust particles remained till about 15th November when heavy rain 383 

helped to wet deposition of PM. Similarly elevated PM2.5 concentrations during severe dust 384 

storms have been reported in other parts of the world (Dumka et al., 2019; Hussein et al., 2020; 385 

Wu et al., 2021). In Beijing, China, Wu et al. (2021) reported daily mean PM2.5 concentrations 386 

exceeding 200 µg m-3 on 15th March 2021 caused by an intense dust storm originating in 387 

Mongolia. In addition, PM2.5 levels were ~109 µg m-3 on 25th July 2018 in Amman, Jordan 388 

during a dust storm episode originating in the Sahara Desert (Hussein et al., 2020; Shafiee et 389 

al., 2017).  390 

3.3.2 Changes in horizontal visibility and 10-m wind speed  391 

Figure 9 shows the hourly ground-based measurements of horizontal visibility and wind 392 

speed during 1-6 November 2021 at three sites in CA (Turkmenabat, Tashkent and Khujand) 393 

directly affected by the dust storm. In Turkmenabat, the dust arrived at around 09:00 UTC on 394 

4th November and lasted for approximately 15 hours. During the arrival of the dust storm, 395 

visibility dropped drastically from about 10 km to 1 km, accompanied by a notable increase of 396 
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wind speed from about 4 ms-1 to 10–12 ms-1 during the peak of the dust storm over the site (Fig. 397 

8a). The minimum horizontal visibility was recorded at 15:00 UTC with a value of 692 m, 398 

when the wind speed was 12.5 ms-1.  399 

In Tashkent, horizontal visibility varied considerably on days prior to the dust storm, 400 

while the large gaps in visibility were accompanied by weak-to-calm winds (< 1–2 ms-1) that 401 

favoured the accumulation of anthropogenic aerosols and pollutants near the ground. This is a 402 

characteristic atmospheric condition in urban-polluted environments, where the weak winds 403 

and temperature inversions are responsible for trapping aerosols near the ground, which 404 

contribute to scattering of solar radiation and visibility degradation (Dumka et al., 2017; 405 

Liakakou et al., 2020). However, on 4 November the dramatic decrease in visibility was 406 

accompanied by a notable increase in wind speed (6–7 ms-1) signalling the arrival of the dust 407 

storm (Fig. 9b). As mentioned above, Tashkent was severely affected by this severe dust storm, 408 

which reduced visibility below 1000 m at 15:00 UTC and below 200 m between 16:00–18:00 409 

UTC (4 November 2021). Dust aerosols over the city remained for the next 8 days, contributing 410 

to the reduced visibility (< 2–3 km; Fig. 9b) and the increased PM2.5 concentrations compared 411 

to pre dust storm days. 412 

In Khujand, the dust plume arrived at 12:00 UTC and immediately caused a reduction in 413 

visibility to below 2.5 km. As the dust plume thickened, visibility dropped below 1 km for 414 

about 7 hours. At the time of dust arrival, the wind speed in Khujand was 10 ms-1, while the 415 

changes in wind speed and visibility due to arrival of the dust storm were mostly similar in all 416 

the examined stations. This indicated that the thick dust plume that blanketed these sites was 417 

approaching in the form of a dust wall accompanied by strong near-surface winds, resulting in 418 

a strong negative correlation between wind speed and horizontal visibility. On the days prior 419 

to the dust storm, visibility records were mostly affected by local activities in the cities, while 420 
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on the days after the dust storm, the visibility remained at general low levels, until atmospheric 421 

cleaning. 422 

3.3.3 Variations in surface air-temperature  423 

Figure 10 shows the temperature variation during the first half of November 2021 in 424 

Tashkent, Khujand, and Turkmenabat. The data showed that the dust intrusion on 4 November 425 

significantly changed the temperature regime in the region. As mentioned above, dust particles 426 

remained in the atmosphere for a long time, until heavy rain cleaned the air on 15th November 427 

2021 in Tashkent and Khujand. In Turkmenabat, there was no rain, but horizontal visibility 428 

started to increase above 10 km from 14th November 2021, after the removal of dust aerosols.  429 

In Turkmenabat, the daytime air temperature decreased on 4th November 2021 compared 430 

to 3rd November 2021 (before dust event) and 11th November 2021 (after dust event) by -11.8°C  431 

and -3.4°C , respectively. However, opposite changes in nighttime temperature occurred by 432 

+5.1°C and +10.4°C  relative to the days before and after the dust event. A similar situation 433 

was observed in Tashkent, where the daytime temperature decreased by -9.8°C  and -10.1°C  434 

relative to 2nd November 2021 and 12th November 2021, while at night there was an increase 435 

in temperature by +2.3°C and +2.9°C , respectively. In Khujand, the dust storm on 4th 436 

November 2021, caused a notable decrease in daytime air temperature by -8.6°C  and -12.5°C  437 

with respect to 2nd and 13th November 2021. The respective nighttime air temperatures were 438 

higher on 4th November by +9.5°C  and +8.4°C  compared to aforementioned days. It should 439 

be noted that apart from the aforementioned temperature amplitudes between the dust day and 440 

specific days before and after the dust event, the arrival of the dust storm over each station 441 

caused a notable decrease in air temperature (Fig. 10), which is partly attributed to presence of 442 

a cold front associated with dust and to radiative impact of dust on solar radiation.  443 
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Similar temperature changes with the arrival of intense dust storms have been reported 444 

at several sites worldwide (Alharbi et al., 2013; Kaskaoutis et al., 2019b; Maghrabi et al., 2011; 445 

Prakash et al., 2015). Kaskaoutis et al. (2019b) reported a considerable decrease in maximum 446 

temperature (~8–11°C ) due to dust radiative cooling and the passage of a cold front on 5th -6th 447 

February 2019 compared to 4th February 2019 in Zabol, Iran. The Middle East also experienced 448 

a remarkable reduction of −6.7 °C  in temperature due to the dust radiative cooling during 449 

severe dust storms from 18th to 22nd March 2012 (Prakash et al., 2015). According to previous 450 

studies, mineral dust particles have an important role in global energy balance via both direct 451 

(on solar radiation) and indirect (on clouds) effects (Kok et al., 2018, 2017). Generally, when 452 

shortwave radiation encounters dust aerosols, cooling happens because some radiation does 453 

not reach the Earth’s surface. On the other hand, dust particles can also absorb longwave 454 

radiation, emitted by the earth, atmosphere and clouds, and contributes to planetary warming 455 

(Kok et al., 2018; Mahowald et al., 2014; Miller et al., 2006; Tegen and Lacis, 1996). 456 

3.4 Backward trajectory analysis 457 

To monitor the movement of the dust storm that affected the three receptor sites, the 458 

HYSPLIT-4 model was implemented to analyse the transport pathway of dust particles through 459 

3-hour time intervals up to 48 hours before dust episodes reaching the study locations (Fig. 11). 460 

The starting point of trajectories was in Turkmenabat on 4/11/2021 at 09:00 UTC, in Tashkent 461 

on 4/11/2021 at 11:00 UTC, and in Khujand on 4/11/2021 at 12:00 UTC. The arriving height 462 

of the air masses at the receptor sites was set at mid boundary layer height to guarantee both 463 

transition and ending of dust trajectories in the boundary layer (Broomandi et al., 2021; Karaca 464 

et al., 2009).  465 

Turkmenabat, in central Turkmenistan, was hit by the dust plume on 4th November at 466 

09:00 UTC, while the air masses at the altitude of 275 m originated from north/north-eastern 467 

directions, i.e., Qaraghandy and Pavlodar in Kazakhstan (Fig. 11a), passing over southeast 468 
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Kazakhstan, where the dust storm was generated (Fig. 2b). Similar air mass pathways are 469 

observed in Tashkent (Fig. 11b), which was upwind of the dusty air masses that hit 470 

Turkmenabat. The starting points of the majority of the air masses at 130 m altitude (mid-471 

boundary layer height) were from eastern and central Kazakhstan, and continued to the Almaty 472 

region, Jambyl and south Kazakhstan, before reaching Tashkent (Fig. 11b). The dusty air 473 

masses that hit Khujand travelled over the same regions (Fig. 11c), while the results of 474 

trajectories simulation were consistent with the SEVIRI Visible/IR imagery (Fig. 3) during the 475 

dust intrusion, indicating that air masses were mainly originated from south-western parts of 476 

Russia, as well as eastern, central, and southern Kazakhstan. While they were passing over dust 477 

sources located in south Kazakhstan, including Kyzylorda and Kyzylkum Deserts, the transport 478 

of dust particles was facilitated by the northeast winds toward Turkmenabat, Khujand and 479 

Tashkent in the afternoon of 4th November 2021.  480 

3.5 Land degradation in Central Asia and future projections 481 

The 4th November severe dust storm over south-eastern Kazakhstan that affected a large 482 

area in CA, was a unique and rare phenomenon, in terms of its intensity, that happened in an 483 

area vulnerable to dust emissions and with continuous soil degradation during recent decades 484 

due to ongoing human interventions (Aiman et al., 2018; Baubekova et al., 2021; Guney et al., 485 

2020; Kismelyeva et al., 2021; Ramazanova et al., 2021). Apart from the high PM 486 

concentrations during dust storms, potentially toxic elements (PTEs) as soil contaminants 487 

transported by dust may add more health and ecological concerns over the CA region. 488 

Due to the potentially toxic-contaminated soils in arid areas of CA, it is recommended to 489 

perform site-specific studies, also examining the chemical composition during intense dust 490 

storms. It is also highly recommended to take effective and immediate stabilising measures to 491 

control the wind erosion in vulnerable areas. Since sand and dust storm (SDS) activity is an 492 

alarming challenge to sustainable development in more than 150 countries that are directly 493 
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affected by SDS worldwide (Middleton and Kang, 2017), it is necessary to prepare suitable 494 

climate adaptation and mitigation strategies, developing more reliable and accurate early 495 

warning systems and quantifying the impacts to societal implications in both national and 496 

regional scales. A transboundary multi-hazard risk assessment is also essential in analysing the 497 

cause-and-effect relationships and helping policymakers to fully understand the required 498 

dynamics and complexity of policy actions. Such transboundary dialogue and collaboration 499 

between the affected countries lead to policy interventions reflecting the geospatial link among 500 

the origins and receptors, which can positively influence both adaption and mitigation aspects. 501 

4 Conclusions 502 

This study investigated a severe dust storm that occurred on 4th November 2021 over 503 

Central Asia, a phenomenon unprecedented in this region over the last 150 years (Eurasianet, 504 

2021) that caused an increase of PM10 concentrations above 18,000 µg m-3  in Tashkent, 505 

Uzbekistan. Meteorological measurements at selected sites in Central Asia including 506 

Turkmenabat in Turkmenistan, Khujand in Tajikistan and Tashkent in Uzbekistan showed that 507 

a large part of Central Asia was highly impacted by this unique dust storm, which reduced 508 

horizontal visibility to 200–1000 m and daytime temperature by 2-4 °C at different time periods. 509 

The thick dust plume that blanketed these sites approached in the form of a dust wall 510 

accompanied by strong near-surface winds. 511 

Favourable meteorological conditions for the formation of an intense dust storm prevailed 512 

both in the upper and lower troposphere over Central Asia and more specifically over the 513 

eastern Kazakhstan, which was detected by SEVIRI imagery as the main dust-source region. 514 

A high-pressure ridge prevailed during the day prior to the dust storm, stretching from the 515 

Middle East and Iran to the Caspian Sea and west Russia, creating a typical omega blocking 516 

pattern at 500 hPa level, with a large ridge over west Russia and two troughs to its west and 517 
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east. The axis of the ridge progressively shifted from southeast-to-northwest (1st November) to 518 

southwest-northeast on 4th November, resulting in a strong surface air-temperature gradient 519 

and invasion of cold air masses associated with the anticyclonic system over Kazakhstan. The 520 

intense high-pressure system over CA  was a triggering dynamic force for the formation of the 521 

dust storm on 4th November 2021, due to strong easterly winds from the southern flanks of the 522 

high-pressure system toward the southern part of CA, passing over Aralkum, Moiynkum, 523 

Kyzylorda, eastern Kyzylkum, Trans-Unguz, and central Karakum Deserts. On the dust storm 524 

day, an intense jet stream with core wind values of about 4 ms-1 was located just above the dust-525 

source region in southeastern Kazakhstan.    526 

HYSPLIT air-mass back trajectories at the receptor sites of Turkmenabat, Khujand, and 527 

Tashkent were consistent with SEVIRI satellite data regarding the apportionment of the dust 528 

intrusions at each site, indicating that the dusty air masses mainly originated from the south-529 

eastern parts of Kazakhstan, including Kyzylorda and Kyzylkum Deserts. The transport of dust 530 

plumes was facilitated by the northeast winds toward Turkmenabat, Khujand, and Tashkent in 531 

the afternoon of 4th November 2021. Central Asia is considered a highly sensitive area in view 532 

of climate change due to projections of precipitation decrease and increased possibility of 533 

prolonged droughts. Under such climatic conditions in the future, severe dust storms in the area 534 

will inevitably follow an increasing frequency, causing large deterioration to atmospheric 535 

environment and major socio-economic issues in the countries of Central Asia.    536 
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 915 

Figure 1: True colour image from the Terra-MODIS sensor 916 

(https://worldview.earthdata.nasa.gov) on 4th November 2021, focused on the dust storm. 917 
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 928 

Figure 2: Physiographic map of the study area highlighting the Central Asian countries.  929 
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 932 

Figure 3: SEVIRI satellite images over Central Asia at different hours on 4 November 2021, 933 

detecting the evolution of the thick dust plume (in pink/magenta). The key receptor sites of 934 

Tashkent in Uzbekistan, Khujand in Tajikistan and Turkmenabat in Turkmenistan are also 935 

shown. 936 
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 937 

Figure 4: Composite maps of geopotential heights at 500 hPa (black contours) and surface 938 

temperature (shaded area) from 1 to 6 November 2021 (a - f). 939 
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 942 

Figure 5: Composite maps of omega at 300 hPa (shaded area) and zonal wind at 250 hPa 943 

(blue contours) from 1 to 6 November 2021 (a - f). 944 
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Figure 6: Composite maps of geopotential heights at 850 hPa (dash black contours) and 952 

mean sea-level pressure (MSLP, shaded area) from 1st to 6th November 2021 (a - f). 953 
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 956 

Figure 7: Composite maps of dust load (g m-2) and surface vector winds (m s-1) from 1st to 957 

6th November 2021 (a-f). 958 
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 971 

Figure 8: Hourly PM2.5 concentrations in Tashkent around the dust storm day (4th November 972 

2021), color-coded with the AQI values. 973 
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 986 

Figure 9: Hourly ground-based measurements of wind speed and horizontal visibility at 987 

stations in Central Asia, (a) Turkmenabat, (b) Tashkent and (c) Khujand during 1-6 988 

November 2021. 989 



ACCEPTED M
ANUSCRIP

T

41 
 

 990 

Figure 10: The hourly ground-based measurements (2-m temperature) for the study stations 991 

of (a) Turkmenabat (b) Tashkent, and (c) Khujand between 1-15 November 2021. 992 
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 994 

Figure 11: Backward trajectory analysis by HYSPLIT model at receptor sites of (a) 995 

Turkmenabat, (b) Tashkent and (c) Khujand on 4th November 2021 (the dust storm day). 996 

 997 
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