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A B S T R A C T   

PM10-associated potential toxic elements (PTEs) can enter the respiratory system and cause health problems. In the 
current study, the health risk indices caused by PM10 inhalation by adults, children, and infants in 158 European cities 
between 2013 and 2019 were studied to determine if Europeans were adversely affected by carcinogenic and non- 
carcinogenic factors or not. The Mann–Kendall trend test examined PM10’s increasing or decreasing trend. Random 
Forest analysis was also used to analyse meteorological factors affecting PM10 in Europe. Hazard quotient and cancer 
risk were estimated using PM10-associated PTEs. Our results showed a decline in continental PM10 concentrations. The 
correlation between PM10 concentrations and temperature (− 0.40), PBLH (− 0.39), and precipitation were statistically 
strong (− 0.21). The estimated Pearson correlation coefficients showed a statistically strong positive correlation be-
tween As & Pb, As & Cd, and Cd & Pb during 2013–2019, indicating a similar origin. PTEs with hazard quotients below 
one, regardless of subpopulation type, posed no noncancerous risk to Europeans. The hazard quotient values positively 
correlated with time, possibly due to elevated PTE levels. In our study on carcinogen pollution in Europe between 2013 
and 2019, we found unacceptable levels of As, Cd, Ni, and Pb among adults, children, and infants. Carcinogenic risk 
rates were highest for children, followed by infants, adult women, and adult men. Therefore, besides monitoring and 
mitigating PM concentrations, effective control of PM sources is also needed.  
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1. Introduction 

Air quality is affected by natural and anthropogenic activities. At-
mospheric particulate matter is a health-threatening air pollutant 
(Almeida et al., 2020; WHO, 2005, 2021). 

Globally, air quality has become the top environmental issue in 
recent decades. World Health Organization’s acute PM10 exposure 
guideline is 45 μg/m3, and the chronic PM10 exposure guideline is 15 
μg/m3 (WHO, 2005, 2021). The current European Legislation sets the 
limit for PM10 values for human health protection at 50 μg/m3 (daily 
average) and 40 μg/m3 (annual average). To ensure health, short- and 
long-term values shouldn’t be exceeded (WHO, 2021 ). Nevertheless, 
European cities have poor air quality due to high PM10 levels (EEA, 
2016). 

WHO reported three million premature deaths from ambient PM 
worldwide in 2016 (Lim et al., 2012). Epidemiological studies show that 
PM exposure can increase hospitalisation, outpatient visits, lung cancer, 
and respiratory and cardiovascular disease mortality (Kim et al., 2015; 
Lyu et al., 2017; Samoli et al., 2008; Mahmoodirad and Niroomand, 
2020). A recently conducted systematic review reported a meta-analytic 
effect estimate of RR = 1.04 (95% CI:1.03–1.06) between PM10 and all 
non-accidental mortalities per 10 μg/m3, assuming a linear relationship 
(Chen & Hoek, 2020; WHO, 2021). According to GRADE (Grading of 
Recommendations Assessment, Development and Evaluation), the cer-
tainty of evidence was considered high. More specifically, Chen & 
Hoek’s 2020 meta-analysis found that estimated Risk Ratios (RRs) of 
PM10 exposure (per 10 μg/m3) were 1.12 (95% CI:1.06–1.19) for res-
piratory, 1.06 (95% CI:1.01–1.10) for ischemic heart disease, and 1.08 
(95% CI:1.04–1.13) for lung cancer mortality. The estimated RRs were 
also above 1 for COPD, stroke, and circulatory mortality (Chen & Hoek, 
2020; WHO, 2021). 

PM10 contains primary and secondary constituents in European cities 
(Holst et al., 2008; Pommier, 2021; Pommier et al., 2020). The primary 
compounds are elemental carbon, organic matter, sea salt, etc. In 
contrast, secondary compounds are generally formed in the atmosphere 
through the chemical reactions (Pommier, 2021; Pommier et al., 2020; 
Lau et al., 2020). PM10 particles can also contain PTEs from natural 
sources like the earth’s crust (e.g., Fe, Ca, Ba, or Mn) or anthropogenic 
and natural sources (e.g., As, Pb, Cd, Zn, Ni, Cu, Cr or Hg). Season, 
climate, geography, and combustion sources affect PM concentration 
and composition (Panda et al., 2021; Valavanidis et al., 2008; Shafiee 
et al., 2019; Mahmoodirad et al., 2019). 

Besides particle size distribution, numerous studies have investi-
gated the association between particle chemical composition and human 
health risks, including carcinogenic and non-carcinogenic health risks 
(Almeida et al., 2020; Bello et al., 2017; Chalvatzaki et al., 2019; Curtis 
et al., 2006; Das et al., 2020; Lyu et al., 2017; Pinto et al., 2015; 
Romanazzi et al., 2014; Samek, 2016; Singh & Gupta, 2016; Guevara, 
2016; WHO, 2005; 2021; Bello et al., 2017; López et al., 2017; Holst 
et al., 2008). A health risk assessment is necessary to estimate the 
adverse impacts of PM on human health in different environments to 
map the potential risk associated with everyday life exposure to atmo-
spheric PM (Chalvatzaki et al., 2019; Acosta et al., 2011; Duan et al., 
2014; Lee et al., 2013; Tan et al., 2017; Tong et al., 2020; Zhi et al., 
2021; Niroomand et al., 2020a). The health risk assessment can help 
residents avoid certain activities to protect their health. Inhalable par-
ticle health risk assessments are not yet common. 

To answer frequently asked questions related to the level of health 
risk associated with inhaling polluted air, the purpose of this novel study 
was to estimate the potential health risks to residents exposed to PM10 
containing PTEs (As, Cd, Ni, and Pb), based on data accessibility and 
availability, across Europe between 2013 and 2019. In this study, PM10 
particles were chosen over PM2.5 because (1) PM10 is a health-harming 
pollutant. The new WHO Air Quality Guidelines published in 2021 
provide recommendations for six pollutants, one of which is PM10, 
which significantly impacts health independent of PM2.5 (WHO, 2021). 

(2) Although PM2.5 penetrates the lungs more deeply than PM10, the 
impact of particulate matter exposure on human health depends on their 
chemical composition and not only their size. (3) We should also stress 
that PM10 particles correspond to particulate matter with an aero-
dynamic diameter smaller than 10 m; PM2.5 particles are also included. 

2. Materials and methods 

2.1. Study area 

One hundred and fifty-eight cities were selected from Austria, 
Belgium, Croatia, Cyprus, Czech Republic, Denmark, Estonia, France, 
Germany, Gibraltar, Ireland, Italy, Latvia, Lithuania, Poland, Romania, 
Slovenia, Spain, Switzerland, and the UK (Fig. 1 & Table S1). These cities 
are selected based on a) data accessibility and availability and b) rep-
resentatives of large city characteristics in the chosen country. 

2.2. Air quality & meteorological data 

Air quality data, including daily mean concentrations of PM10, As (in 
PM10), Cd (in PM10), Ni (in PM10), and Pb (in PM10), as secondary data 
were obtained from the European environmental Agency database 
(https://discomap.eea.europa.eu/map/fme/AirQualityExport.htm) for 
the studied cities (Fig. 1) in 2013–2019. In the current study, all the 
stations represent the urban background, and rural sites are not included 
in our study due to the lack of data. Regarding the hourly air quality 
data, only valid data for 20 h a day were averaged, representing the daily 
PM10 concentration. In cases with more than one air quality station, we 
decided to choose the one which was most representative of the city’s 
general urban air quality, with data coverage of at least 75%. It was also 
checked that missing values were not concentrated on any specific year 
or season. We did not consider the difference between the instruments 
and methods used for PM10 nor the measuring of heavy metals across the 
study domain. It was assumed that the organisations measuring the data 
followed appropriate calibration methods (Morawska et al., 2021). 

The meteorological data, including the daily mean, wind speed, wind 
direction, precipitation, temperature, mean sea-level pressure (MSLP), 
and planetary boundary layer height (PBLH), were obtained from ERA5 
(ECMWF Reanalysis v5) reanalysis daily based data. ERA5 reanalysis 
data is produced by Copernicus Climate Change Service (C3S) at Euro-
pean Centre for Medium-Range Weather Forecasts (ECMWF). 

All the spatial representation and interpolation techniques were 
carried out through the QGIS (Version 3.22.3) software (QGIS, 2022; 

Fig. 1. The investigated domain in the current study between 2013 and 2019.  
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Niroomand et al., 2020a,b). The IDW (Inverse Distance Weighting) 
interpolation algorithm was applied with a spatial resolution of 0.1◦ by 
0.1◦ for the output raster. 

2.3. p.m.10 time series analysis 

To analyse the significance of trends in long-term changes in PM10 
data, Mann–Kendall test (”(wq)” package in R) was applied, using the 
“seaKen” functions, for the seasonal Mann–Kendall trend tests (Kendall, 
1949; Mann, 1945). The Sen’s Slope estimator was also applied, from 
the same package (wq), to quantify the magnitude of changes in the 
PM10 concentrations (Silva Junior et al., 2018; Mahmoodirad and 
Sanei, 2016; Mirzaei et al., 2019; Niroomand et al., 2020b). 

2.4. Feature selection based on Random Forest analysis 

The feature importance (FI) analysis was carried out via Random 
Forest in R to investigate the meteorological parameters impacting PM10 
levels across Europe (Molla-Alizadeh-Zavardehi et al., 2014; Shafiee 
et al., 2021; Jamshidi et al., 2021). FI analysis was applied for meteo-
rological parameters (temperature, mean sea-level pressure, planetary 
boundary layer height, wind speed, wind direction, and precipitation). 

2.5. Health risk assessment 

To investigate whether the health risk existed in the selected Euro-
pean cities, potential cancerous and non-cancerous risk rates using mean 
values of the contaminant contents were estimated below. Three expo-
sure routes are specified by USEPA (United Environmental Protection 
Agency) in the risk assessment: inhalation, ingestion, and dermal con-
tact (US EEA, 2019). Since inhalation is the most rapid exposure 
pathway, it was investigated in our study (Lim et al., 2012; US EEA, 
2019; Holst et al., 2008). Therefore, US EPA (2007) methodology was 
deployed to evaluate the health risk via inhalation pathway due to being 
exposed to PM10 containing selected potentially toxic elements (US EPA, 
2007). Both risk rates were calculated for As, Cd, Ni, and Pb. 

2.5.1. Estimated daily intake 
The daily intake was determined for four subpopulations of adult 

men & adult women (>7 years old), children (1 < 7 years old), and 
infants (0 < 1 year old) using Equation (1) as below (ATSDR, 2005): 

EDI =(C× IR×AF ×F ×ED) / (BW ×AT) (1)  

AT =ED × 365  

where EDI, C, IR, AF, F, ED, BW, and AT stand for estimated daily intake 
(mg/kg body weight per day), contaminant concentration (mg/m3), 
intake rate (m3/day), bioavailability factor (unitless), frequency of 
exposure (days/year), exposure duration (years), body weight (kg), and 
averaging time (days), respectively. Table S2 presents the variable used 
to estimate daily intake by different subpopulations. 

2.5.2. Potential carcinogenic risk of outdoor air inhalation 
The probability of cancer development in European inhabitants was 

estimated based on the reported methods in the literature (Gruszeck-
a-Kosowska, 2018; Chalvatzaki et al., 2019; Panda et al., 2021; Yousefi 
et al., 2021; Pachoulis et al., 2022). The dose-response correlation in the 
quantitative cancerous risk assessment is expressed in the potency slope, 
which calculates the probability of cancerous risk associated with an 
estimated exposure. The cancerous Risk (R) value is acceptable below 
1.00E-06-1.00E-04 (Chalvatzaki et al., 2019; Megido et al., 2017), 
whereas the most tolerable risk rate is 1.00E-06. 

The health risk vales of carcinogenic compounds were calculated 
according to equation (2) as below (US EPA, 2007): 

R=EDI × SF (2)  

where R, EDI, and SF stand for cancer risk (unitless), estimated daily 
intake (mg/kg body weight per day), inhalation slope factor [(mg/kg 
body weight per day)− 1], respectively. Table S3 presents the slope factor 
(SF) values in estimating carcinogenic risk for different substances 
(CalEPA, 2016; Garbero et al., 2011; Taiwo et al., 2017; US EPA, 2016; 
Yang et al., 2014). 

2.5.3. Potential non-carcinogenic risk of outdoor air inhalation 
Noncarcinogenic risk means all adverse impacts on human health 

caused by exposure factors, excluding cancer. The allowable non-cancer 
risk is below 1, and values above 1 are unacceptable risks and must take 
necessary corrective actions to reduce the risk levels. The unacceptable 
values greater than 1 mean a higher probability of developing non- 
cancerous impacts on human beings (US EPA, 1989). 

The health risk values of non-carcinogenic compounds were calcu-
lated according to equation (3) as below (US EPA, 2007): 

HQ=EDI/RfD (3)  

where HQ, EDI, and RfD stand for hazard quotient (unitless), estimated 
daily intake (mg/kg body weight per day), and reference dose (mg/kg 
body weight per day), respectively. 

Table S3 presents the reference dose (RfD) values in estimating non- 
carcinogenic risk for different substances (CalEPA, 2016; Garbero et al., 
2011; Taiwo et al., 2017; US EPA, 2016; Yang et al., 2014). 

2.5.4. Combined carcinogenic and non-carcinogenic risk rates 
Equation (4) was used to estimate the total carcinogenic risk (Rt) of 

the inhalation of many substances at the same time (US EPA, 2007): 

Rt =R1 + R2 + ⋅⋅⋅ + Rn (4)  

Also, Equation (5) was used to estimate the total non-carcinogenic risk 
(HI) of the inhalation of many substances at the same time (US EPA, 
2007): 

HI =HQ1 + HQ2 + ⋅⋅⋅ + HQn (5)  

where 1–n: specified the number of air pollutants. 

3. Results 

3.1. Spatial and temporal variation of PM10 

Across Europe, the maximum permissible daily PM10 concentration 
recommended by WHO (45 μg/m3) was exceeded between 2013 and 
2019. The mean annual values are above the WHO recommended 
annual value of 15 μg/m3 in a vast part of Europe during the studied 
period. Table 1 shows the highest number of PM10 events and daily PM10 
concentrations, exceeding WHO guidelines in European cities between 
2013 and 2019. 

On the continental scale, there was a gradual decline in the total 
number of exceedances ranging from 6446 days in 2013–3721 days in 
2019, which could be attributed to the increasing temperature during 
the year’s cold period and heating reduction across Europe (Megaritis 
et al., 2013). 

Figure S1 shows the monthly variations in the total number of PM10 
events exceeding WHO recommended daily level in the study area from 
2013 to 2019. Generally, the total monthly number of exceedances of 
the WHO limit was reduced between 2013 and 2019 (Figure S1). Table 2 
shows the monthly analysis of the highest number of PM10 events and 
daily PM10 concentrations, exceeding WHO guidelines in European 
cities between 2013 and 2019. The provided information indicated that 
the highest measured levels were in the cold period of the year (Table 2) 
in our domain of study. The frequency of exceedance of the WHO 
threshold differs from its intensity in European cities. The longest events 
of high PM10 concentrations are mainly observed during wintertime 
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(Table 2). The lower air temperature in the cold period, especially in 
December, January, February, and March, can be responsible for the 
highest number of exceedances in this year’s period. On the other hand, 
only sporadic exceedances of PM10 daily limits are reported in sum-
mertime (Figure S1). For example, in September 2015, a record- 
breaking dust storm that originated from dust sources located in 
Northern Syria and Iraq could increase the PM10 daily concentration 
above 1000 μg/m3 (1137 μg/m3 on September 8, 2015) (Mamouri et al., 
2016). 

In our work, a long-term analysis of PM10 concentrations showed a 
statistically significant reduction in most of the studied cities between 
2013 and 2019, which could be attributed to the successful implemented 
clean air policies by the European Union. Fig. 2 shows the magnitude of 
changes via Sen’s slope estimator in some selected cities. But a few 
cities, mainly in Spain and Poland, showed a statistically notable in-
crease in PM10 concentration in the study period (Figure S2). Among the 
studied cities, Riga (Latvia), Gibraltar (Gibraltar), and Lodz (Poland), 
with Sen’s slopes of − 2.04, − 1.78, and − 1.75, respectively, showed the 
highest magnitude of reduction between 2013 and 2019. While Elblag 
(Poland), Poznan (Poland), and Malaga (Spain), with Sen’s slopes of 
1.15, 0.91, and 0.87, respectively, had the highest magnitude of increase 
in PM10 concentration during the study period (Figure S2). 

3.1.1. The impact of meteorological parameters on PM10 concentrations 
In our study, to work out the dependence of PM10 concentrations on 

meteorological parameters, the Pearson correlation coefficient and 
feature importance via RF analysis was determined over the period from 
2013 to 2019 (Figure S3). The study domain was divided into Western, 
Eastern, Northern, and Southern Europe due to the variations in weather 
conditions across Europe (Fig. 2). Fig. 4 illustrates the meteorological 
parameters over Europe between 2013 and 2019.. 

According to the RF analysis, the main influencing factor(s) in 
Northern, Southern, Western, and Eastern Europe was precipitation 
(0.20), temperature (0.30), temperature (0.23), and temperature (0.34), 
respectively (Figure S3). 

On the continental scale, the estimated Pearson correlation co-
efficients showed a statistically strong negative correlation (p-value 
below 0.05) between PM10 concentrations and temperature (− 0.40), 
PBLH (− 0.39), and precipitation (− 0.21). Wind speed had a statistically 

negative significant correlation (p-value below 0.05) with PM10 con-
centrations as well, but not strong. PM10 concentrations had statistically 
positive correlation (p-value below 0.05) with MSLP (+0.20) and wind 
direction (+0.13). Regionally, PM10 concentrations showed higher 
vulnerability to temperature, MSLP, PBLH, wind direction, wind speed, 
and precipitation in Eastern (− 0.63), Northern (+0.30), Eastern 
(− 0.55), Northern (+0.30), Southern (− 0.25), and Northern Europe 
(− 0.34), with p-values below 0.05, compared to other parts, 
respectively. 

3.2. Spatial and temporal variation of potentially toxic elements 

Table 3 shows the maximum and minimum annual concentrations of 
PTEs in PM10 across Europe between 2013 and 2019. According to the 
results, the cities of Antwerpen (39.7 ng/m3), Kladno (6.7 ng/m3), 
Gibraltar (16.9 ng/m3), Antwerpen (618.7 ng/m3) had the highest 
annual values of As, Cd, Ni, and Pb, respectively from 2013 to 2019 
(Table 3).. 

Fig. 3 shows the spatial variation of the correlation between time and 
HQ values for As, Cd, Ni, and Pb in PM10, respectively within the study 
area between 2013 and 2019. 

Generally, a negative correlation between PTEs (As, Cd, Ni, and Pb) 
and time was observed. Results showed a positive correlation in Ni 
content within vast study cities (50 cities). As (in PM10), Cd (in PM10), Ni 
(in PM10), and Pb (in PM10) showed a positive correlation with time in 
some studied cities, mainly located in Germany (9 cities), Germany (3 
cities), Poland (19 cities), and Germany & Spain (4 cities), respectively. 

The strongest positive correlation between time and As (in PM10), Cd 
(in PM10), Ni (in PM10), and Pb (in PM10) was in Rouen (France, +0.98), 
Rouen (France, +0.90), Piotrkow Trubinalski (Poland, +0.88), and 
Alicante (Spain, +0.91), respectively. While cities of Antwerpen 
(Belgium, − 0.96), Antwerpen (Belgium, − 1.0), Castellon de la Plana 
(Spain, − 0.98), and Saint Etienne (France, − 0.97) showed the highest 
negative correlation with time regarding As (in PM10), Cd (in PM10), Ni 
(in PM10), and Pb (in PM10), respectively. Rouen (France), Berlin (Ger-
many), and Belfast (UK) showed a positive correlation with time, 
meaning an increasing trend in all PTEs but with different values. There 
are also a few cities with correlation values near zero, showing neither 
positive nor negative correlation with time, which means there was not 
changes in the content of the studied elements (Fig. 3). 

On the continental scale, the estimated Pearson correlation co-
efficients showed a statistically strong positive correlation between As & 
Pb (in PM10), As & Cd (in PM10), and Cd & Pb (in PM10) with values of 
0.68, 0.52, and 0.48, respectively during 2013–2019, indicating the 
similarity between their sources. Regionally, the highest correlation 
between the aforementioned PTEs was observed in Western Europe, 
with values above 0.90. 

3.3. Health risk assessment 

3.3.1. Estimates of non-cancer risks 
The non-cancer risk estimates (i.e., HQ value) were calculated based 

on the calculated intake rates and considering the reference values (RfD) 

Table 1 
The highest number of PM10 events and daily PM10 concentrations, exceeding 
WHO guidelines in European cities between 2013 and 2019.   

The highest number of PM10 

events. 
The highest daily PM10 concentration. 

Year City Number of 
days 

City Daily PM10 concentration 
(μg/m3) 

2013 Paris 209 Venezia 313 
2014 Paris 145 Nicosia 259 
2015 NowySacz 125 Nicosia 1137 
2016 Gornoslaski 128 Sevilla 335 
2017 Gornoslaski 124 Gornoslaski 370 
2018 Gornoslaski 128 Nicosia 325 
2019 Rybnik 106 Rybnik 272  

Table 2 
The monthly analysis of the highest number of PM10 events and daily PM10 concentrations, exceeding WHO guidelines in European cities between 2013 and 2019.   

The highest number of PM10 events. The highest daily PM10 concentration. 

Year City Month Number of days City Month Daily PM10 concentration (μg/m3) 

2013 Paris March 28 Venezia January 313 
2014 Nicosia December 26 Nicosia March 259 
2015 Terni December 30 Nicosia September 1137 
2016 Vicenza December 30 Sevilla February 335 
2017 Gornoslaski January 27 Gornoslaski January 370 
2018 Gornoslaski February 28 Nicosia March 325 
2019 Verona January 22 Rybnik December 272  
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of doses. For the PTEs, hazard quotient values, regardless of the sub-
population type, were estimated to be smaller than 1, indicating no risk 
to adult men, women, children, and infants across Europe in the study 
period (Table S4 and S7). 

The highest mean annual HQ values of exposures of PM-associated As 
to adult men, women, children, and infants were observed in Ant-
werpen, with values of 0.034, 0.040, 0.083, and 0.060, respectively, in 
2015. HQ − Cd, HQ − Ni, and HQ − Pb had their highest values in Ant-
werpen (2014), Gibraltar (2014), and Antwerpen (2015), respectively, 
regardless the subpopulation type (Table S5). The total hazard values 
(HI) of exposures of PM-associated metals followed the same pattern for 
studied subpopulations during 2013–2019 (Figures S5-S8). Table S4 
shows that the order of HQ values of exposures of PM-associated PTEs 
were Children, infants, adult women, and adult men, which could be 
attributed to the differences between estimated daily intake values of 
subpopulation types. Our estimated HQ values were close to the ones 
reported in similar studies, for example HQ − As = 0.063 and 0.0234 in 
northern Spain (cities of Asturias & Gijon) and Lisbon (Chalvatzaki 

et al., 2019; Megido et al., 2017). 
Fig. 4 and S9-S11 show a general negative correlation with time in 

the HQ values irrespective to the subpopulation, but being exposed to 
PM-associated PTEs in the cities with a positive correlation of PTEs with 
time indicated an increasing non-carcinogenic risk following the order 
of HQ-Ni > HQ-As > HQ-Cd > HQ-Pb between 2013 and 2019. It means 
that the amount of evaluated PTEs can increase the non-cancer risks by 
increasing HQ values. Regarding HQ-Ni, many cities in Eastern Europe 
and some in Western and Southern Europe are more vulnerable than 
others, indicating growing concern from 2013 to 2019. In contrast, HQ- 
As showed more vulnerability in the Western and Southern European 
studied cities, while HQ-Pb among 4 studied non-cancer risks showed 
less concern during the study time frame. 

The strongest positive correlation between time and HQ-As, HQ-Cd, 
HQ-Ni, and HQ-Pb was in Rouen (France, >0.95), Rouen (France, 
>0.90), Piotrkow Trubinalski (Poland, +0.85), and Alicante (Spain, 
>0.90), respectively. While cities of Antwerpen (Belgium, <-0.95), 
Antwerpen (Belgium, <-0.95), Castellon de la Plana (Spain, <-0.95), 

Fig. 2. The governing meteorological parameters including (a) wind profile & MSLP (Pa), (b) Temperature (◦C), (c) PBLH (m), and Precipitation (mm/day) over 
Europe between 2013 and 2019. 

Table 3 
The maximum and minimum annual concentrations of potentially toxic elements in PM10 across Europe between 2013 and 2019.  

Year Max Min Max Min Max Min Max Min 

As (ng/m3) Cd (ng/m3) Ni (ng/m3) Pb (ng/m3) 

2013 Glogow (16.0) Nicosia (0.2) Kladno (6.7) Alicante (0.1) Gibraltar (16.0) Alicante (0.1) Terni (73.1) Palma (1.1) 
2014 Antwerpen (35.2) Badajoz (0.1) Antwerpen (7.0) Alicante (0.1) Gibraltar (16.9) Kaunas (0.5) Antwerpen (392.7) Caceres (1.3) 
2015 Antwerpen (39.7) Badajoz (0.1) Kladno (3.0) Toledo (0.04) Charleroi (15.7) Ceske Budejovice (0.3) Antwerpen (618.7) Caceres (1.5) 
2016 Antwerpen (31.2) Klaipeda (0.1) Kladno (5.0) Toledo (0.01) Hamburg (14.2) Toledo (0.2) Antwerpen (490.4) Toledo (0.4) 
2017 Glogow (30.2) Klaipeda (0.1) Antwerpen (4.2) Alicante (0.01) Gibraltar (13.9) Klaipeda (0.2) Antwerpen (332.5) Klaipeda (0.6) 
2018 Antwerpen (11.6) Zagreb (0.1) Kladno (3.9) Caceres (0.03) Gibraltar (12.9) Toledo (0.3) Antwerpen (175.7) Caceres (1.0) 
2019 Antwerpen (16.2) Klaipeda (0.1) Antwerpen (3.8) Caceres (0.03) Gibraltar (13.0) Kaunas (0.4) Antwerpen (221.1) Madrid (0.3)  

P. Broomandi et al.                                                                                                                                                                                                                             



Environmental Pollution 323 (2023) 121232

6

Table 4 
The percent of European inhabitants at cancer risk from exposure to PM10-bound potentially toxic elements via inhalation from 2013 to 2019.  

Year C1a C2a C3a C4a C1a C2a C3a C4a C1a C2a C3a C4a C1a C2a C3a C4a C1a C2a C3a C4a  

R − As R − Cd R − Ni R − Pb R − Total 

Adult Men 
2013 0 4 86 4 0 1 39 1 0 0 10 0 0 0 1 0 0 9 98 9 
2014 0 4 86 4 0 1 39 1 0 0 10 0 0 0 1 0 0 9 98 9 
2015 0 4 86 4 0 1 39 1 0 0 10 0 0 0 1 0 0 9 98 9 
2016 0 4 86 4 0 1 39 1 0 0 10 0 0 0 1 0 0 9 98 9 
2017 0 4 86 4 0 1 39 1 0 0 10 0 0 0 1 0 0 9 98 9 
2018 0 4 86 4 0 1 39 1 0 0 10 0 0 0 1 0 0 9 98 9 
2019 0 4 86 4 0 1 39 1 0 0 10 0 0 0 1 0 0 9 98 9 
Adult Women 
2013 0 5 91 5 0 1 46 1 0 0 14 0 0 0 1 0 0 12 99 12 
2014 0 5 91 5 0 1 46 1 0 0 14 0 0 0 1 0 0 12 99 12 
2015 0 5 91 5 0 1 46 1 0 0 14 0 0 0 1 0 0 12 99 12 
2016 0 5 91 5 0 1 46 1 0 0 14 0 0 0 1 0 0 12 99 12 
2017 0 5 91 5 0 1 46 1 0 0 14 0 0 0 1 0 0 12 99 12 
2018 0 5 91 5 0 1 46 1 0 0 14 0 0 0 1 0 0 12 99 12 
2019 0 5 91 5 0 1 46 1 0 0 14 0 0 0 1 0 0 12 99 12 
Children (1–7 years old) 
2013 1 17 99 18 0 5 80 5 0 0 46 0 0 0 3 0 1 39 100 40 
2014 1 17 99 18 0 5 80 5 0 0 46 0 0 0 3 0 1 39 100 40 
2015 1 17 99 18 0 5 80 5 0 0 46 0 0 0 3 0 1 39 100 40 
2016 1 17 99 18 0 5 80 5 0 0 46 0 0 0 3 0 1 39 100 40 
2017 1 17 99 18 0 5 80 5 0 0 46 0 0 0 3 0 1 39 100 40 
2018 1 17 99 18 0 5 80 5 0 0 46 0 0 0 3 0 1 39 100 40 
2019 1 17 99 18 0 5 80 5 0 0 46 0 0 0 3 0 1 39 100 40 
Infants (0–1 year old) 
2013 0 10 97 10 0 3 64 3 0 0 28 0 0 0 1 0 0 25 100 26 
2014 0 10 97 10 0 3 64 3 0 0 28 0 0 0 1 0 0 25 100 26 
2015 0 10 97 10 0 3 64 3 0 0 28 0 0 0 1 0 0 25 100 26 
2016 0 10 97 10 0 3 64 3 0 0 28 0 0 0 1 0 0 25 100 26 
2017 0 10 97 10 0 3 64 3 0 0 28 0 0 0 1 0 0 25 100 26 
2018 0 10 97 10 0 3 64 3 0 0 28 0 0 0 1 0 0 25 100 26 
2019 0 10 97 10 0 3 64 3 0 0 28 0 0 0 1 0 0 25 100 26  

a C1 = R ≥ 10E-4; C2 = 10E-5≤R < 10E-4; C3= >10E-6; C4= > 10E-5. 

Fig. 3. The distribution of correlation strength between PTEs’ concentrations (As, Cd, Ni, and Pb in PM10, respectively) and time across Europe between 2013 and 
2019. Note: The legend equals to Pearson’s coefficient of correlation value. 

P. Broomandi et al.                                                                                                                                                                                                                             



Environmental Pollution 323 (2023) 121232

7

Fig. 4. The distribution of correlation strength between HQ-As, HQ-Cd, HQ-Ni, and HQ-Pb respective to adult men and time across Europe between 2013 and 2019. 
Note: The legend equals to Pearson’s coefficient of correlation value. 

Fig. 5. The distribution of correlation strength between R–As, R–Cd, R–Ni, and R–Pb respective to adult men and time across Europe between 2013 and 2019. Note: 
The legend equals to Pearson’s coefficient of correlation value. 
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and Saint Etienne (France, <-0.95) had the highest negative correlation 
with time regarding HQ-As, HQ-Cd, HQ-Ni and HQ-Pb, respectively. 
Berlin (Germany) and Rouen (France) were the only cities showing a 
positive correlation in all HQ values with time, meaning an increasing 
trend in all non-cancer risks but with different values. In terms of Ant-
werpen (Belgium), according to Table S5, even though it has the highest 
annual values of PTEs but shows a negative correlation with time in HQ 
values, which means decreasing during the study time. 

3.3.2. Estimates of cancer risks 
Carcinogenic risk rates (R) were calculated using estimated intake 

rates and the Slope Factor (SF) values. This study assumes an acceptable 
risk level to be one additional cancer case occurrence in the population 
of one million people (1.00E-06). The unacceptable risk levels were 
found in our study on carcinogenic pollution in the case of As (in PM10), 
Cd (in PM10), Ni (in PM10), and Pb (in PM10) in the vast part of Europe 
among adults (men & women), children, and infants between 2013 and 
2019. On the continental scale, Table 2 shows the percentage of at- 
cancer-risk people in respective studied subpopulations from 2013 to 
2019. 

The following order of R values of exposure of PM-associated PTEs, 
irrespective of the subpopulation type, to inhabitants, was observed: 
R–As > R–Cd > R–Ni > R–Pb (from highest to smallest R-value). Carci-
nogenic risk rates were higher among children, followed by infants, 
adult women, and adult men, which could be attributed to the differ-
ences between estimated daily intake values of subpopulation types 
(Table 4 and S6). Results showed that above 80% of European in-
habitants were at carcinogenic risk related to As (R–As>10E-6), with 
elevated R values, above 95% in respective to children and infants. After 
As, Cd had higher carcinogenic risk rates among people, especially 
children and infants. Compared to As and Cd, Pb showed less vulnera-
bility to carcinogenic risk rates. Table S6 shows only the three highest 
calculated R values in each year respective to studied subpopulations. 

The total carcinogenic risk was highest in Antwerpen (Belgium, 
2014) with the vales of 1.4E-04, 1.7E-04, 3.4E-04, 2.5E-04 for adult 
men, women, children, and infants, respectively (Figures S5-S8). 

Regardless of the subpopulation type, carcinogenic risk rates fol-
lowed a negative correlation with time (Fig. 5 and S12-S14). While some 
cities with a positive correlation indicated an increasing carcinogenic 
risk following the order of R–Ni > R–As > R–Cd > R–Pb between 2013 
and 2019. It means that the evaluated amounts of PTEs over studied time 
(Fig. 3) can increase the cancer risk rates among inhabitants, regardless 
of a subpopulation, by increasing R values across Europe, indicating the 
necessity of taking practical controlling actions of PM sources along with 
controlling and mitigation of PM concentrations. Again, a vast number 
of cities in Eastern Europe, along with some in Western and Southern 
Europe, showed higher vulnerability to the carcinogenic risk rate of Ni, 
indicating growing concern from 2013 to 2019. Among four studied 
carcinogenic risk rates, R–Pb showed less concern during the study time 
frame (Fig. 5 and S12-S14). 

The strongest positive correlation between time and R − As, R − Cd, 
R − Ni, and R − Pb was in Rouen (France, >0.95), Rouen (France, 
>0.90), Piotrkow Trubinalski (Poland, >0.85), and Alicante (Spain, 
>0.90), respectively. On the other hand, Antwerpen (Belgium, <-0.95), 
Antwerpen (Belgium, <-0.95), Castellon de la Plana (Spain, <-0.95), 
and Saint Etienne (France, <-0.95) showed the highest negative corre-
lation with time regarding R − As, R − Cd, R − Ni, and R − Pb, respec-
tively. Berlin (Germany) and Rouen (France), by positive correlations in 
all R values with time, showed increasing vulnerability to cancer risk 
among different subpopulations with different values. 

4. Discussion 

4.1. Spatial-temporal variation of PM10 concentration 

Despite introduced PM mitigation policies in Europe, similar studies 

reported severe PM episodes across Europe, including Cracow and 
Warsaw (January 2006), Athens (December 2012), London (February 
2014), and Paris (March 2014) (Reizer & Juda-Rezler, 2016). Polish 
cities recorded 77 p.m.10 episodes between 2005 and 2012. In some 
PM10 events, the daily EU air threshold was exceeded sevenfold in 
January 2009 and tenfold in January 2010. In January 2010, Jelenia 
Gora had the highest PM10 level, 480 g/m3 (Reizer & Juda-Rezler, 
2016). 

A study investigating the PM10 levels in 17 European cities showed 
that central and east-central Europe had the highest PM10 levels in 
2010–2014. Poland, Bulgaria, and Slovakia had the highest PM10 con-
centrations, while Finland had the lowest (Chlebowska-Styś et al., 
2017). In early October 2020, a PM10 event was reported in Northern 
Europe. Several Norwegian air quality stations recorded daily mean 
PM10 values up to 97 g/m3, which exceeded reported mean values from 
the past four to 10 years (Groot Zwaaftink et al., 2021). The observed 
PM10 exceedance events are usually accompanied by a stable 
high-pressure atmospheric SLP (sea-level pressure) pattern, which fa-
vours thermal inversion and lowers the planetary boundary layer height 
(Czernecki et al., 2017; Holst et al., 2008; Nidzgorska-Lencewicz & 
Czarnecka, 2015). 

A recent study examined Europe’s PM10 temporal trend to determine 
the effectiveness of clean air policies (Beloconi & Vounatsou, 2021). In 
this study, PM10 concentration decreased by 36.5% (30.3%, 41.9%) 
between 2006 and 2019 (Beloconi & Vounatsou, 2021). In another 
study, PM10 emissions decreased by 1.7% per year between 2000 and 
2017 in the EU-28 (Sicard et al., 2021). Despite a reduction in PM10 
emissions in the EU during the study period, the percentage of EU-28 
residents exposed to PM10 concentrations (40 g/m3) ranged from 18 
to 44% in 2000–2010 to 13 to 30% in 2010–2017. EU threshold values 
were repeatedly violated, mainly in Eastern Europe (Guerreiro et al., 
2014; Sicard et al., 2021). In urban EU-28 stations, annual average PM10 
concentrations fell by 0.65 g/m3 (EEA, 2019). 

Wind erosion, mining and construction, agricultural land manage-
ment, and traffic resuspension are Europe’s leading sources of coarse PM 
emissions (Guevara, 2016). PM emissions are decreasing across Europe 
thanks to EU legislation focused on large point and road transport 
sources. The reduction was due to energy production and distribution 
improvements, gas abatement techniques, vehicle technologies related 
to “Euro” standards, and solvent storage and distribution (EEA, 2014; 
Sicard, Paoletti, et al., 2020; Vestreng et al., 2009). 

But, the lack of regulations increases household, commercial, and 
institutional emissions (Gozzi et al., 2017; Guevara, 2016). These sectors 
contributed 43% of the total EU-28 p.m.10 emissions in 2013. (EEA, 
2019; Guevara, 2016). Another alarming issue is long-range trans-
boundary air pollution caused by atmospheric circulation indicating 
that each country can be a producer and receiver (EEA, 2015; Gozzi 
et al., 2017). 

4.2. Weather conditions and changes in PM10 concentration 

Air pollution levels vary depending on pollution source character-
istics or discharged emissions, weather conditions, and the study area’s 
physical geography (Czernecki et al., 2017; Volná & Hladk, 2020). 
Meteorological conditions determine pollutant intensity and dispersion 
(Volná & Hladk, 2020). The worst dispersion conditions for PM10 air 
pollution occur at high atmospheric SLP (positive correlation), low 
precipitation (negative correlation), low wind speed (negative correla-
tion), low air temperatures (negative correlation), and low PBLH 
(negative correlation) along with a wind direction from areas with a 
higher accumulation of pollution sources (Zhou et al., 2007) (Fig. 2 & 
S3). Wind profile affects horizontal dispersion and transport of pollut-
ants, while air temperature and atmospheric stability affect vertical 
dispersion. Temperatures rise with height in stable weather, weakening 
vertical mixing. On the contrary, atmospheric instability promotes 
pollutant dispersion (Buchanan et al., 2002). So, improving the current 
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knowledge about the existing correlation between meteorological con-
ditions and elevated PM concentrations can help define health hazards’ 
preventive measures in studied populated areas (ernikovsk et al., 2016; 
Shafiee et al., 2017; Volná & Hladk, 2020). 

Besides, previous studies showed a positive correlation between 
PM10 and summer air temperature, e.g., higher agricultural emissions, 
and a negative correlation in winter, e.g., lower tertiary sector heating 
emissions, which means climate change reduces the benefits of PM 
precursor emission controls and raises PM levels (Barmpadimos et al., 
2011; EEA, 2018). A recent study examined climate change’s impact on 
Spain’s air quality from 1993 to 2017. Most air pollutants changed 
significantly (Borge et al., 2019). Seasonal changes in PM10 levels up to 
22 g/m3 had the most significant impacts over the 25-year study period 
(Borge et al., 2019). 

4.3. p.m.10-associated potential toxic elements (PTEs) 

PM10 particles can also contain PTEs from natural and/or anthro-
pogenic sources (Holst et al., 2008; Pommier, 2021; Pommier et al., 
2020). The observed PTEs, in the current, are from anthropogenic 
sources such as public power and heat, residential combustion, indus-
trial combustion and processes, road transport, non-road transport, and 
waste incineration (Pacyna et al., 2007; Schlutow et al., 2021). For As, 
Cd, and Ni, stationary fuel combustion is the main source, while gasoline 
combustion is the primary source (Pacyna et al., 2007). Pb is also found 
in vehicle exhaust and tyre-abrasion materials (Das et al., 2020; Stern-
beck et al., 2002). EU-27 Cd and Pb emissions fell 33% and 44% between 
2005 and 2019. (EEA, 2019). Manufacturing and extractive industries 
accounted for 57.6% and 61.8% of Cd and Pb emissions, respectively. 
Moreover, the energy supply sector’s Cd emissions notably dropped 
58.4%. Germany, Italy, and Poland contributed half of the EU’s Pb, Cd, 
and Hg emissions in 2019 (EEA, 2019). 

A significant positive correlation between Ni and As, Cr, with values 
of 0.46 and 0.51, respectively, was also reported (Batbold et al., 2021). 
Cr was mainly derived from vehicles and industrial emissions. While, As 
and Ni mainly come from coal combustion (Kursun Unver & Terzi, 
2018). Pb permanent sources include lead-acid batteries, vehicle tyre 
abrasion, and urban brake wear (Batbold et al., 2021; Guttikunda et al., 
2013). 

Our study found a positive correlation between time and PTEs con-
centrations in some cities, indicating the need to control PM sources 
rather than overall PM concentrations. The development of monitoring 
devices capable of near-real-time chemical analysis can help authorities 
assess the health risks of air pollution in specific areas and identify 
anthropogenic and natural pollution sources (Godish et al., 2015). 
Current emission inventories must be improved to help solve present 
and future air quality issues. To address current and future issues, 
emission inventories should include species so far ignored, such as iso-
topes, heavy metals, and intermediate volatility organic compounds 
(IVOCs) that contribute to many chemical processes involving PM 
(Gozzi et al., 2017). 

4.4. p.m.10-associated potential toxic elements & human health 

Urban air pollution increases mortality, non-cancerous and 
cancerous risks (Effatpanah et al., 2020; Leili et al., 2021; Morakinyo 
et al., 2017; Yousefi et al., 2022). Health risk assessments in Krakow, 
Poland, between 2007 and 2016 showed that non-carcinogenic risk 
levels were medium for inhaling PM10 (adults, children, and infants) 
(Gruszecka-Kosowska, 2018). The HQ values in Krakow relating to PM10 
inhalation for men, women, children, and infants were 1.44, 1.72, 3.51, 
and 2.53, respectively (Gruszecka-Kosowska, 2018). On the contrary, 
our results showed low non-cancer risks in Krakow between 2013 and 
2019, regardless of subpopulation type. This is likely due to a 
decreasing, but not statistically significant, trend in PM10 and a negative 
correlation between PTEs and time showing decreases over time. 

For a short time, other studies in Athens, Kuopio, and Lisbon showed 
HQ values below 1, indicating no toxic effect. In Athens, inhaling certain 
heavy metals (As, Cd, Co, Cr, Mn, Ni, and Pb) posed higher risks 
(Chalvatzaki et al., 2019). 

The estimated carcinogenic risk associated with polluted air showed 
that the carcinogenic risk of studied subpopulations in Krakow was not 
acceptable respective to As (in PM10), Cd (in PM10), Ni (in PM10), and Pb 
(in PM10) from 2007 to 2016. (Gruszecka-Kosowska, 2018). Children, 
infants, adult women, and men had total carcinogenic risks of 3.04E-04, 
2.22E-04, 1.45E-04, and 1.22E-04 (Gruszecka-Kosowska, 2018). Chal-
vatzaki et al. (2019) found a low risk of cancer-related to Cd and Ni in 
Athens, Lisbon, and Kuopio, but R–As with values above 10E-6 showed a 
higher risk in Athens for all subpopulations (Chalvatzaki et al., 2019). It 
is also essential to add that Arsenic can cause bladder, lung, kidney, 
liver, skin, and prostate cancers (Martin et al., 2014). 

According to our study and others, children and infants face greater 
carcinogenic and non-carcinogenic risks. Epidemiologic studies show 
that polluted air highly threatens these subpopulations (Leili et al., 
2021; Schwenk et al., 2003). The main suggested reasons include renal 
clearance, greater lung volume compared to body surface area, faster 
ventilation rate, and metabolic immaturity (Aliff et al., 2020; Daston 
et al., 2004). 

Elevated PTEs exposure could notably increase cancer risk and other 
health endpoints, especially in populated areas. Among the most com-
mon health endpoints of toxic air pollution exposure are genotoxicity, 
mutagenic effects, nervous diseases, incremental lifetime risk, and 
cancer (blood, skin, bone, and lung) (Ekpenyong and Asuquo, 2017; 
Guerreiro et al., 2016; Idani et al., 2020; Kumar et al., 2016). 

4.5. Strengths, limitations and suggestions for future studies 

As a strength of this research study, its relevance lies in its scope, 
which includes 158 European cities to provide a current overview of the 
impact of inhaling polluted particulate matter on European citizens, 
distinguishing it from other relevant scientific works with a limited 
scope. For this reason, solid evidence supports general conclusions. The 
results allow evaluation of the long-term effectiveness of European air 
quality policies on health, using non-carcinogenic and carcinogenic risk 
as metric variables. In the context of public health, this research may 
offer air quality managers valuable clues about the need to control PM 
emission sources, reducing ambient air PM concentrations and, by 
extension, human exposure to potentially polluted particulate matter. 

Covering a vast number of cities from different countries allows us to 
compare the outputs of conducted PM10 trend analysis, PM10-associated 
PTEs (including As, Cd, Ni, and Pb), their temporal & spatial distribu-
tion, and health risk assessment and have a better understanding of the 
changes over time in PM10 concentrations, spatio-temporal distribution 
of PM10-associated PTEs (including As, Cd, Ni, and Pb), and conse-
quently non-cancerous & cancerous risks affecting four subpopulations 
(including adult men, women, children, and infants) across Europe be-
tween 2013 and 2019. Such a provided vast amount of information is 
vital in developing health-protective policies based on realistic exposure 
scenarios. 

The dissemination of results can also increase public awareness, 
specifically among sensitive groups, about the atmospheric pollution 
damaging effects (in this case, assessing cancer incidence) and its 
associated factors. Current knowledge on the status of European in-
habitants’ exposure to particulate matter comprised of toxic elements at 
potentially polluted levels is paramount in terms of Public Health. In this 
sense, authorities may take necessary actions to reduce people’s expo-
sure to toxic air pollutants and decrease cancer risk. 

As a leading limitation, this study does not cover the exposure of all 
citizens at the European level, despite its vast reach. Nevertheless, the 
ambitious objective proposed by the investigation group offers the most 
comprehensive published results concerning the exposure level of Eu-
ropeans to potentially polluted particulate matter. 
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As future suggestions, more efforts are still necessary to systemati-
cally collect information on the existing relationship between particu-
late matter, constitutes, and toxicity in cancerous and/or non-cancerous 
risk estimation. In this respect, it is possible to use the hazard index to 
estimate the allowable amount of particulate matter as per the 
maximum permissible concentrations of each PTEs. Further laboratory 
and field studies are needed to explicitly collect the aforementioned 
information to incorporate PM-associated constitutes in the health risk 
assessment process. Additionally, risk estimation of toxic interactions of 
PTEs in different sub-mixtures is also required since there is very rare or 
no information available for such risk estimation. Only a few medical 
field-related studies showed that metals could interact with each other 
and interfere with each other’s toxic effects (Choudhury & Mudipalli, 
2008; Das et al., 2020). They investigated the combined toxicity of PTEs 
to rat models. Still, the collected information did not apply to human 
health risk estimation because human receptors’ toxicity benchmarks 
are unavailable. Moreover, the present USEPA database does not include 
the reference dose values of the mixture of constitutes (U.S. EPA, 2004), 
for instant, Cd–Pb, Ni–Pb, and Ni–Cd, etc. So, it is challenging to assess 
cancerous and/or non-cancerous risks in the context of exposure to a 
mixture of PM-associated PTEs. 

So further detailed studies are required to include the interaction of 
different metals in risk assessment, to provide guidelines including dose- 
response data of metals’ mixture to human health, and to reduce the 
associated uncertainty with risk estimation of exposure to the mixture of 
PM-associated PTEs. Besides, other concerns raising uncertainties can be 
attributed to the lack of indoor measurement of some specific pollutants 
since people spend most of their time indoors, where pollutant con-
centrations differ from outdoors (Guo et al., 2004). It is also essential to 
estimate the amount of time people spend indoors and outdoors, as well 
as pollution types and their concentrations, to have a more realistic 
health risk assessment. The accurate characterisation of the investigated 
population is also necessary to determine the inhalation exposure, such 
as body weight, sex, lung surface area, health condition, and lifestyle 
Gruszecka-Kosowska (2018); (Gruszecka-Kosowska, 2018; Yousefi et al., 
2022; Lewandowska et al., 2019; Pachoulis et al., 2022; Colas et al., 
2022). Therefore, corrective actions are required to reduce the risk rates 
below acceptable levels once health risk values are accurately estimated. 

5. Conclusion 

To investigate the adverse impacts of being exposed to PM10-bound 
PTEs, the current study conducted health risk analyses associated with 
exposure to PM10-bound PTEs, both cancerous and non-cancerous risks, 
in selected European cities from 2013 to 2019. 

Despite the observed decreasing trend in the PM10 concentrations, 
the recommended allowable daily PM10 concentrations were exceeded 
in the vast part of Europe, especially during the cold period of the year. 
Based on our results, the cities of Antwerpen (39.7 ng/m3), Kladno (6.7 
ng/m3), Gibraltar (16.9 ng/m3), Antwerpen (618.7 ng/m3) had the 
highest annual values of As, Cd, Ni, and Pb, respectively from 2013 to 
2019. The correlation analysis between time and PTEs’ concentrations 
showed a positive correlation with time in some cities. 

The estimated hazard quotient by representing non-carcinogenic 
effects, with values less than one, showed no risk to adult men, 
women, children, and infants due to the inhalation of particle-bound 
PTEs. On the other side, calculated carcinogenic risk rates (R) showed 
unacceptable risk levels in the case of As (in PM10), Cd (in PM10), Ni (in 
PM10), and Pb (in PM10) in the vast part of Europe among adults (men & 
women), children, and infants between 2013 and 2019. The highest R 
values of exposure of PM-associated PTEs, irrespective of the subpopu-
lation type, belong to As, while the smallest one was Pb. Carcinogenic 
risk rates were higher among children, followed by infants, adult 
women, and adult men. Regardless of the subpopulation type, carcino-
genic risk rates followed a negative correlation with time. While some 
cities with a positive correlation indicated an increasing carcinogenic 

risk following the order of R–Ni > R–As > R–Cd > R–Pb between 2013 
and 2019. It means that the amount of evaluated PTEs can increase the 
cancer risk rates among inhabitants by increasing R values. 

In conclusion, our results highlighted (a) the need to control PM 
sources rather than overall PM concentrations and (b) the importance of 
health impacts from exposure to air pollution. Current emission in-
ventories must be improved to help solve present and future air quality 
issues. To address current and future issues, emission inventories should 
include species so far ignored, such as isotopes, heavy metals, and in-
termediate volatility organic compounds (IVOCs) that contribute to 
many chemical processes involving PM. Moreover, implementing ac-
curate health risk assessment methods caused by exposure to ambient 
particles is essential in controlling and mitigating urban air pollution. 
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